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ABSTRACT: Considerable effort has been devoted to searching for high-performance boron nitride (BN) structures due to their
promising applications competing with diamond. However, this search remains a significant challenge due to the exceedingly
complex energy landscape of BN. Considering that most BN structures have a structure analogous to that of carbon, such as cubic
BN to diamond, hexagonal BN to graphite, and that far more carbon allotropes than BN structures have been reported, we here
collected 732 literature-reported carbon allotropes as structural templates to direct the discovery of BN structures. First-principles
calculations indicate that 171 BN structures constructed from the carbon templates are mechanically stable, among which 139 are
newly found and 32 have been reported. A literature survey shows that the number of known mechanically stable BN structures has
more than tripled, indicating that our template-directed search dramatically extends the family of BN structures. Most interestingly,
15 mechanically and thermodynamically stable BN structures have a density higher than c-BN, and 13 of them are newly found,
including the stiffest and strongest BN structures. Finally, the mechanisms and possible synthesis of high-performance BN structures
are discussed.

■ INTRODUCTION
Light main group elements (B, C, N, etc.) that can form strong
covalent bonds and possess high valence electron density are
considered the most promising candidates for high-perform-
ance solids.1−5 Among these elements, carbon allotropes,
including carbon nanotubes, graphene, and diamond, have
been extensively studied because of their impressive mechan-
ical properties.1−3 For instance, diamond has been long known
as the hardest material and is widely used for cutting tools.6

However, the easy reaction of diamond with ferrous metals
limits the application. As a structure analogous to diamond and
the second hardest material, cubic boron nitride (c-BN) has
excellent chemical resistance to Fe-, Co-, and Ni-containing
materials.7,8 Compared to diamond, BN’s chemical resistance
makes it an ideal choice for cutting and drilling tools, as c-BN
can cut all ferrous metals, including superalloys.9,10 Addition-
ally, BN outperforms diamond in thermal stability and
oxidation temperatures, making it a promising material for a
wide range of applications.11 BN is increasingly being used in
advanced electronic and optoelectronic devices. Its potential as

an environmentally friendly and cost-effective material for
next-generation thermoelectric devices further highlights BN’s
growing importance in sustainable technologies.12,13 Hence,
ultrahigh-performance BN structures are promising to compete
with diamond in industrial applications.

Driven by such promising uses competing with diamond,
significant efforts have been devoted to the discovery of high-
performance BN structures over the past decades. Since
Wentorf and Bundy first reported the transformation of
hexagonal BN (h-BN) to c-BN and wurtzite BN (w-BN) at
high pressures in the 1950s and 1960s,14−16 the prediction,
synthesis, and characterization of BN structures have been
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stimulated.17−21 First-principles calculations provide a power-
ful tool for materials discovery. For instance, Kuzubov et al.22

predicted that hP3-BN has the highest density up to 3.66 g/
cm3, and Xiong et al.23 predicted that Pm3n-BN has the highest
tensile strength up to 121 GPa. Furthermore, the development
of structure prediction techniques, e.g., Crystal structure
AnaLYsis by Particle Swarm Optimization (CALYPSO)
code,24 has accelerated the discovery of BN structures. By
employing a microhardness model,25,26 Li et al.27 predicted
that Pbca (60 GPa), Z’-BN (60 GPa), M-BN (59 GPa), and
BC8-BN (57 GPa) exhibit hardness comparable to c-BN (63
GPa) and w-BN (63 GPa). Meanwhile, Zhou et al.28 predicted
that the bulk moduli of bct-BN (379 GPa), bct2W1 (383 GPa),
bct1W1 (388 GPa), and bct2W2 (388 GPa) are comparable to c-
BN (404 GPa) and w-BN (403 GPa). These predictions
provide guidelines for the experimental syntheses of BN
structures.

Most BN structures have a structure analogous to that of
carbon, such as c-BN to diamond, and h-BN to graphite.
Despite the progress made in the discovery of BN structures,
the number of known BN structures remains significantly
smaller than carbon allotropes. Our literature survey shows
that only 55 unique mechanically stable BN structures have
been reported, whereas the Samara Carbon Allotrope Database
(SACADA) has collected 703 known carbon allotropes29 by
April 2023. The most stable stoichiometric ratio of BN
structures is B:N = 1:1,30 and the B−N bonds in BN structures
exhibit bonding characteristics similar to those of C−C bonds
in carbon. Considering this fact, utilizing existing carbon

allotropes as structural templates holds significant potential to
accelerate the discovery of BN structures.31

In this work, 732 carbon allotropes reported in the literature
are used as templates for constructing BN structures. Screening
based on first-principles calculations yields 171 mechanically
stable BN structures, including 139 new and 32 known BN
structures. To the best of our knowledge, the number of
known stable BN structures has more than tripled, increasing
from 55 to 194. Most interestingly, 15 mechanically and
thermodynamically stable BN structures from templates have a
density higher than c-BN, and 13 of them are newly found,
including the stiffest BN-009 (Fdd2). Tensile tests show that
the densest BN-001 (hP3-BN) has the highest recorded tensile
strength. The mechanisms and possible synthesis of high-
performance BN structures are discussed.

■ METHODS
To investigate the stabilities and mechanical properties of BN
structures, first-principles calculations based on the density
functional theory (DFT) were performed by using the Vienna
Ab-Initio Simulation Package (VASP).32 The Perdew−Burke−
Ernzerhof parametrization of the generalized gradient approx-
imation was used for the exchange-correlation functional.33 An
energy cutoff of 520 eV was used, and a k-point mesh with a
density of about 50 Å (the product of each lattice constant and
the corresponding number of k-points) for structural
optimization and about 33 Å for elasticity tensors calculation
was used for Brillouin zone sampling.34 All structures were
fully relaxed using a conjugate gradient algorithm with a

Figure 1. Screening of BN structures. (a) Illustration of atomic replacement from carbon templates, (b) mechanically stable BN structures obtained
from our screening and literature, and (c) screening of mechanically stable BN structures. (d) Energies above hull for 194 mechanically stable BN
structures from templates and literature.
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stringent convergence criterion of the force on each atom
(10−3 eV/Å). In ab initio molecular dynamics (AIMD)
simulations, an energy cutoff of 400 eV was used for a balance
between computational accuracy and cost. The AIMD
simulations were performed in a supercell (no less than 48
atoms) in the canonical ensemble using the Andersen
thermostat.35

■ RESULTS AND DISCUSSION
Screening of Stable BN Structures. Numerous carbon

allotropes have been reported in the past decades. Hoffmann et
al.29 gathered together the known carbon allotropes and
indexed them in the SACADA. Meanwhile, Zhang et al.36

recently discovered numerous superdense carbon allotropes.
High-throughput screening methods have been widely used to
explore novel materials.37−43 These methods provide effective
ways to explore mechanically and thermodynamically stable
structures. Accordingly, we extracted 732 carbon structures
from the SACADA29 and Zhang’s work36 as templates for
constructing BN structures. Subsequently, all the carbon atoms
in these carbon templates were replaced with boron and nitride
atoms, and the resultant structures without stable stoichio-
metric ratio of BN structures (B:N = 1:1) were filtered out
(Figure 1a). Considering the computational efficiency,
structures with more than 40 atoms in the primitive cell
were further filtered out. As a result, 241 BN structures were
retained for further structural optimization using first-
principles calculations. Duplicate checking was then performed
on these optimized structures using symmetry comparison,
local atomic geometries, and structural mapping techniques to
ensure uniqueness.44 Additionally, BN structures with low-
dimensional building blocks were removed using the topology-

scaling algorithm proposed by Ashton et al.45 Such screening
yields 212 three-dimensional energy-optimized BN structures.
To evaluate their mechanical stabilities, elasticity tensors were
calculated for these 212 structures using the strain−stress
method.46 The elasticity tensors for 171 structures are positive-
definite, indicating their mechanical stabilities. The screening
processes are illustrated in Figure 1b,c.

A literature survey identified 60 unique BN structures from
experiments and computations. To ensure consistency, we
optimized these structures and assessed their mechanical
stabilities using first-principles calculations. Our calculations
show that 55 of the BN structures reported in the literature are
mechanically stable. Upon structural checking,44 we found that
32 mechanically stable BN structures obtained from templates
were also reported in the literature, which were named “BN
structures from both templates and literature” (Figure 1b).
The remaining 23 mechanically stable BN structures were
solely reported in the literature, which were named “BN
structures solely from literature”. This indicates that 139 BN
structures obtained from templates are newly found compared
to the 55 structures reported in the literature (Figure 1b).
These 139 newly found BN structures were named “BN
structures solely from templates”. These results demonstrate
that template-directed search dramatically extends the family of
BN structures, since the number of known stable BN structures
has more than tripled (from 55 to 194). All these 194 BN
structures are provided in the Supporting Information (Table
S1). Formability is important for practical applications, which
can be measured by energies above hull. The energies above
hull of BN structures were calculated as the energy difference
between the energy for a BN structure and that of the lowest
energy BN (h-BN). The calculated energies above hull of these

Figure 2. Performance of BN structures. (a) Bulk moduli, (b) shear moduli, (c) Young’s moduli, and (d) Vickers hardness vs densities for 194 BN
structures.
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194 mechanically stable BN structures are shown in Figure 1d
and Table S1.
Mechanical Performance of BN Structures. We

investigated the mechanical properties of these BN structures.
Based on the theory of elasticity, we calculated the Voigt-
Reuss-Hill average elastic moduli of BN structures.47 Unless
otherwise noted, the elastic moduli mentioned below are all
based on the Voigt-Reuss-Hill averaging scheme. The bulk
modulus (B), shear modulus (G), and Young’s modulus (Y)
can be derived from the elasticity tensor of a material (Figure
2a−c and Table S1). Elastic moduli not only characterize the
resistance of a material to elastic deformation but also have a
close correlation with other important properties. For example,
Vickers hardness of a material can be correlated with the bulk
modulus and shear modulus as H = 2 (G3/B2)0.585 − 3.48

Therefore, the hardness of these BN structures can be further
estimated from their elastic moduli (Figure 2d and Table S1).
As a validation, our calculated bulk modulus (380 GPa), shear
modulus (390 GPa), Young’s modulus (871 GPa), and Vickers
hardness (65 GPa) of c-BN, agree well with the literature-
reported corresponding values (376, 382, 856, and 65 GPa,

respectively).49,50 We identified several BN structures with
novel superhard properties. These structures exhibit Vickers
hardness values comparable to recently reported BN structures,
such as the Pm BN reported by Fan et al.51 and O-BN reported
by Huang et al.52 The hardness of these new BN structures
could be further enhanced through nanostructuring, such as
nanograined and nanotwinned microstructures, providing a
general pathway for designing advanced materials with
exceptional thermal stability and mechanical properties.53,54

We further explored the correlations between the densities
and the mechanical properties. These results show that the
correlation coefficients (R2) of densities with B, G, Y, and H
are as high as 0.88, 0.88, 0.89, and 0.81, respectively (Figure 2).
Meanwhile, the correlation of the highest Young’s modulus
with the density is also strong (Figure S1). These strong
correlations between the densities and the mechanical
properties suggest that high density can serve as an indicator
for screening high-mechanical-performance BN structures.
Hence, we performed an in-depth study on BN structures
with a high density in the following investigation. Unless
otherwise noted, each BN structure in this work is named as

Figure 3. Stable superdense BN structures compared to c-BN. BN structures not reported in the literature are marked with their space groups, and
the literature-reported structures are marked with their names in the literature.
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“BN-number (space group)” (Table S1). Among these 194 BN
structures, 17 exhibit densities exceeding that of c-BN and were
defined as superdense BN structures. We further investigated
the thermodynamic stabilities of superdense BN structures by
conducting AIMD simulations for 10 ps at room temperature
(300 K). The simulations show that 15 structures from
templates can maintain structural integrity (Figure 3), and 13
of them are newly found in this work. In the following
investigation, we refer to structures that possess both
mechanical and thermodynamic stability as stable structures,
and we exclusively focus on these stable superdense BN
structures.

Considering the mechanical anisotropy, the direction-
dependent mechanical properties are also interesting. The
mechanical anisotropy of BN-009 (Fdd2) (the ratio of the
maximum and minimum Young’s modulus: Ymax/Ymin = 2.9)
exceeds that of c-BN (Ymax/Ymin = 1.3), and BN-009 (Fdd2)
has the highest recorded Ymax (1175 GPa) that is 21% larger
than that of c-BN (974 GPa). To the best of our knowledge, no
other BN structures have been identified to have a higher Ymax
than BN-009 (Fdd2). Furthermore, the densest [BN-001 (hP3-
BN)] and stiffest [BN-009 (Fdd2)] BN structures discovered
from our template-based screening were investigated by
uniaxial tensile tests along the direction of the maximum
Young’s modulus. Tensile tests of BN-017 (c-BN) and BN-122
(Pm3n-BN with the highest tensile strength of 121 GPa
reported in literature23) were also performed for comparison
(Figure S2). The results show that the tensile strengths for BN-
017 (c-BN) and BN-122 (Pm3n-BN) in the Ymax direction are
59 and 117 GPa, respectively, which are generally consistent
with the literature reported values (55 and 121 GPa,
respectively),20,23 while the tensile strength of BN-001 (hP3-
BN) (172 GPa) and BN-009 (Fdd2) (126 GPa) significantly
exceed the highest reported tensile strength of BN-122 (Pm3n-
BN) (117 GPa). To summarize, these results demonstrate that
our template-directed search has led to the discovery of the
predicted stiffest BN structure [BN-009 (Fdd2)] and the
predicted strongest BN structure [BN-001 (hP3-BN)].

Considering the correlations between the densities and the
mechanical properties, an investigation of BN-001 (hP3-BN)
and BN-009 (Fdd2) was conducted to elucidate the
mechanisms for their higher densities than BN-017 (c-BN).

All these structures are tetrahedrally coordinated (sp3 hybrid-
ization as shown in Figure 2). Despite their tetrahedral
coordination, the tetrahedral structures of these BN variants
are not identical. BN-001 (hP3-BN) and BN-009 (Fdd2) can
be regarded as distorted structures compared to BN-017 (c-
BN). This structural distortion is reflected in the atomic
distribution. To probe the atomic distribution at various
neighbor levels, we performed statistical analyses by counting
the number of atoms within various spherical shells centered
on each atom. As shown in Figure 4, within the shell radius
range of 2.8−2.9 Å, BN-001 (hP3-BN) and BN-009 (Fdd2)
accommodate 19 atoms, whereas BN-017 (c-BN) accommo-
dates 17 atoms. As the shell radius increases, the difference in
the number of atoms among these structures becomes more
pronounced. In the range of 18−20 Å, BN-001 (hP3-BN) and
BN-009 (Fdd2) exhibit a higher number of atoms compared to
BN-017 (c-BN). This highlights the role of structural
distortions in enhancing the density of these materials. As
the radius grows, the density gap continues to increase,
providing a clearer distinction between these structures. This
mechanism is similar to analogous carbon structures (hP3
carbon and diamond).55

Additional Remarks on the Fabrication of BN
Structures. The synthesis of materials is a key for
applications. To synthesize BN structures, various methods
can be employed, including high-temperature and high-
pressure synthesis,14,54 atmospheric pressure synthesis,56

temperature gradient method,57 chemical vapor deposition
method,58 and physical vapor deposition method.59 Each
method has its advantages and limitations.12 The choice of BN
precursors significantly influences the resultant BN structures.
For example, onion-like BN has been used as the precursor to
synthesize nanotwinned c-BN,54 and h-BN has been used as
the precursor to synthesize c-BN and w-BN.14−16,52 O-BN has
been predicted that it can be synthesized using BN nanotubes
as the precursor.52 These results suggest that it is possible to
synthesize new BN structures through low-density, low-
dimensional BN structures, such as fullerene-like BN
structures,60 and amorphous structures.61 Our newly predicted
BN structures exhibit excellent mechanical properties and hold
great promise to be synthesized experimentally. These BN
structures, along with their remarkable properties, show

Figure 4. Superdense mechanisms of BN structures. Statistical analyses by counting the number of atoms within various spherical shells centered
on each atom for BN-001 (hP3-BN) and BN-009 (Fdd2) compared to BN-017 (c-BN).
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promising potential for various technological fields.10,11,62−65

For example, BN-001 (hP3-BN) and BN-009 (Fdd2) exhibit
fracture strains greater than 20%, making them suitable for
applications in strain engineering and related fields. Moreover,
the energy above hull is used to characterize the formability of
a material. A low energy above hull usually indicates likely ease
of synthesis for a material. Our calculated energies above hull
of 194 BN structures are shown in Figure 1d and Table S1. It
can be found that all the energies above hull for these BN
structures from templates are below 1.4 eV/atom, and most of
them are below 0.5 eV/atom, indicating their formability for
applications. These results provide references for future BN
syntheses.

■ CONCLUSIONS
In summary, we propose a template-directed searching strategy
to accelerate the discovery of BN structures from complex
energy landscapes. This search yields 171 unique BN
structures with good mechanical stability. Among these
structures, 32 BN structures have been computationally or
experimentally fabricated in the literature, providing valuable
support for our work. Meanwhile, the number of known
mechanically stable BN structures has more than tripled,
indicating that our template-directed search significantly
extends the family of BN structures. Analyses of these
structures show strong correlations between the densities and
the mechanical properties. Most interestingly, 15 stable BN
structures from templates have a density significantly higher
than c-BN, and 13 of them are newly found, including the
predicted densest and strongest BN-001 (hP3-BN), and the
predicted stiffest BN-009 (Fdd2). Finally, the superdense
mechanisms and possible synthesis of high-performance BN
structures are discussed.
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