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Spatio‐temporally modulated composite metamaterials (STMCMs) possess tunable and nearly “full‐banded”
asymmetrical elastic wave properties, making them highly promising for uses in a wide range of applications,
such as cloaking, acoustic information processing, ideal vibration isolation, ultrasonic technology. Despite
much progress made in the structural design and fabrication of intelligent materials, the realization of
STMCMs for practical fabrication is still an open issue because of a series of challenges existing in the rational
design of the spatial and temporal ordered structures. In this work, we propose an implementation scheme for a
laminated STMCM and computationally predict its performance. The elementary structure of the laminated
STMCM is constructed by a functional component named as “acoustic switch” that endows the material with
spatio‐temporally modulated mesostructural topology and properties. This work not only provides a practical
implementation scheme for experimental realization of the STMCMs, but also improves the understanding of
STMCMs.
1. Introduction

Spatio‐temporally modulated composite metamaterials (STMCMs),
referring to the metamaterials with spatio‐temporally modulated
mesostructure, exhibit asymmetric wave properties, and hold great
promises for uses in many exciting applications, such as cloaking,
acoustic information processing, ideal vibration isolation and ultra-
sonic technology [1–14]. The elastic wave properties of STMCMs in
the homogenization limit are predicted to exhibit strong Willis cou-
pling (velocity‐generated stresses or strain‐generated momenta)
[15–17], non‐reciprocity, and time‐reversal asymmetry [3,5]. It should
be noted STMCMs have various names in the extensive studies, e.g.
time–space modulated/active/dynamic/tunable/phase controlling/
programmable/time dependent/time‐varying (meta‐) materials. Theo-
retically, as integrating active materials/mesostructures that are
responsible to specific external stimuli, the hybrid structure will pos-
sess spatio‐temporal modulable properties. However, the realization
of STMCMs is still challenging in the rational design of the spatial
and temporal ordered structures.

The early studies of the STMCMs appeared in last century [18–20],
and significant achievements on mechanical STMCMs begins from the
study of the linear elastic waves in transient materials by Weekes [21],
Jensen [22], Rousseau and Maugin [23], Lurie [24] and their co‐
workers. Lurie and Weekes [25], and Sanguinet and Lurie [26] pre-
dicted a series of novel phenomena in a spatio‐temporally modulated
structure with periodic transient properties. Lurie [24] and Shui
et al. [27] characterized the elastic wave propagation in a STMCM
with one‐dimensional (1D) moving properties interface (MPI). Consid-
ering 1D spatio‐temporal periodicity, Lurie [24] first proposed a 1D
metamaterial with asymmetrical wave property based on a homoge-
nization method. Recently, for more general spatio‐temporal periodic-
ity, a lot of in‐depth studies and extensions have been performed
[4,28–32]. Remarkably, Shui et al. [28] and Nassar et al. [4] indepen-
dently extend Lurie’s homogenization theory to arbitrarily modulated
periodic property profiles as well as to high dimensions. Meanwhile,
Shui et al. [33] studied the property evolution in general spatio‐
temporally modulated materials and defined the property moving
velocity (V) as a function of spatio‐temporal gradient of material prop-
erty (P), i.e.,

V ¼ � @P
@t

� rP
rPj j2 : ð1Þ
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In addition, the property moving velocity can be also defined sim-
ilar to Eq. (1) for STMCMs with discontinuous properties. Based on the
definition of the property moving velocity of a MPI, Shui et al. [33,34]
studied the elastic wave propagation law at three‐dimensional (3D)
MPI and proposed a scheme to solve the long‐standing discontinuity
and non‐uniqueness problems when Vj j lies between the minimum
and the maximum phase velocity of component materials
[4,18,19,24].

Despite widespread interest and significant progress made in the
study of STMCMs, practically speaking, the asymmetrical wave proper-
ties are still leaving unclear in the theory and numerical simulations
[1,4,21,24,28,32,33] because of the challenging in the fabrication of
an artificial structure with spatio‐temporally as well as rapidly modu-
lable properties. The basic governing equation for STMCMs is adopted
from the classic wave equation [4,22,24,27,28,33] r � σ ¼ _p� f ,
where σ, p and f are the stress, momentum and volume force, respec-
tively. The underlying assumptions for the equation includes: (a) the
external fields that modulate the properties do not couple with stress
or momentum of the modulated system; (b) globally, the mechanical
system obeys the momentum conservation during the property modu-
lation process, and volume invariance at the mechanically equilibrium
state. To satisfy these two requirements, seldom ready‐found materials
can be composited as a STMCM. For examples, the piezoelectric mate-
rials commonly exhibit coupling between mechanical and electrical
fields, and the wave equation should be accompanied by a piezoelec-
tric constitutive equation; and the shape memory materials have sig-
nificant volume changes in the phase transition, and the wave
equation should be modified by considering change of the initial con-
figuration, i.e., mechanically equilibrium configuration. To this end,
one should develop advanced and practical structure design to meet
the abovementioned requirements. Besides, there are two additional
requirements that should be noted: (c) to obtain the Willis coupling,
the local density should be modulable. The significantly modulable
density without global volume variance only can be realized by inge-
nious structural design. Thus, structural design is highly desirable;
(d) to achieve strong Willis coupling, Vj j should be large enough and
the modulating frequency of local property should be high enough,
that is, the property modulating process should be extremely fast,
which also causes considerable challenges in component material
selection and subsequent structure design.

As indicated in the abovementioned four aspects, a rational struc-
tural design for the practical fabrication of STMCMs is highly desir-
able. Therefore, we proposes an implementation scheme for
STMCMs accordingly, and break down the structural complexity of
the proposed STMCMs into three levels, that is, the primary (compo-
nent with an acoustic switch), secondary (hybrid unit constructed by
one array of conductive acoustic switches and the other array of
non‐conductive acoustic switches) and tertiary (STMCM as the lami-
nates of the hybrid units) levels. The work is arranged as following.
An overview of STMCMs is given in Section 2. In Section 3, we intro-
duce the primary structure consisting of an acoustic switch that can
connect or disconnect the wave propagation path in real time and thus
can be used to modulate topology of the mesostructure. In Section 4,
the structure of the secondary level, especially the artificial interface
between the arrays in the hybrid unit, is elaborated. In Section 5,
the tertiary level of the laminated STMCM is constructed and its func-
tion is demonstrated. Finally, closing remarks is given in Section 6.

2. An overview of the STMCMs

The STMCMs have been briefly introduced in Section 1. This sec-
tion focuses on providing an overview of the structure and wave prop-
erty of STMCMs.

A traditional structural composite is constructed by spatially
arranging of the unit cells, i.e., representative volume elements, and
2

the actual properties P (e.g. the Young’s modulus and density) can
be expressed as periodic function with respect to spatial coordinates
(x ¼ x; y; zð Þ ¼ x1; x2; x3ð Þ) in the material framework, and the periods
are the corresponding sizes of the unit cell (ɛ1 � ɛ2 � ɛ3). Mathemati-
cally speaking, at the homogenization limit, ɛ1 � ɛ2 � ɛ3 ! 0, and the
properties are highly periodically oscillating with respect to x. Under
the assumption of linear elasticity, the mechanical properties can be
described by the Adiabatic elastic tensor λijmn and density ρ, and the
governing equation for small deformation is,

@

@xj
λijmn xð Þ @um

@xn

� �
� @

@t
ρ xð Þ @ui

@t

� �
þ f i ¼ 0; ð2Þ

where ui and f i are the displacement and the external volume force
along the xi–axis, respectively. At the homogenization limit, Eq. (2) is
equivalent to the common linear elastic wave equation with constant
coefficients,

λijmn
@2um
@xj@xn

� ρ
@2ui
@t2

þ f i ¼ 0; ð3Þ

where the homogenized Adiabatic elastic tensor λijmn and density ρ can
be uniquely determined by λijmn xð Þ and ρ xð Þ.

In abovementioned equations, the properties are considered as only
the functions of x, i.e., not related to time t. As proposing STMCMs, the
time‐varying properties should be considered, and the properties are
also the function of t with period ɛ4. Hence, Eq. (2) can be generalized
as

@

@xj
λijmn x; tð Þ @um

@xn

� �
� @

@t
ρ x; tð Þ @ui

@t

� �
þ f i ¼ 0; ð4Þ

which yields a generalized homogenized wave equation [28],

λijmn
@2um
@xj@xn

þ γimn
@2um
@t@xn

� ρ i
@2ui
@t2

þ f i ¼ 0; ð5Þ

where the homogenized properties λijmn, γimn and ρi can be uniquely
determined by λijmn x; tð Þ and ρ x; tð Þ. Unlike Eq. (3), Eq. (5) predicts Wil-
lis coupling and asymmetrical wave properties [4,28] that cannot
emerge in traditional materials. Therefore, these spatio‐temporally
ordered structural composites are named as STMCMs.

In the following, a 1D analysis is conducted to compare the behav-
iors of traditional structural composites and STMCMs. For example,
considering longitudinal waves, λijmn is replaced by the Young’s modu-
lus E. If the material properties are not related to time, Eq. (3) degen-
erates to

E
@2u1
@x2 � ρ

@2u1
@t2

þ f i ¼ 0; ð6Þ

and the homogenized material properties are

E ¼ hE�1i�1

ρ ¼ hρi

(
; ð7Þ

only if E and ρ are well‐defined everywhere and the operator h�i repre-
sents taking its volume‐averaged value, i.e., h�i ¼ R ɛ1

0 �ð Þdx=ɛ1. Let
f i ¼ 0, Eq. (6) has the D'Alembert travelling wave solution,

ux ¼ f x � ctð Þ þ g x þ ctð Þ; ð8Þ
where f x � ctð Þ and g x þ ctð Þ are waves propagation along the þx and
�x directions, respectively. These two waves have the same speed

c ¼
ffiffiffiffiffiffiffiffi
E=ρ

q
: ð9Þ

If the material properties are the function of time, Eq. (5) degener-
ates to the wave equation for 1D STMCMs

E
@2u1
@x2 þ γ

@2u1
@x@t

� ρ
@2u1
@t2

þ f i ¼ 0; ð10Þ
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Fig. 1. Illustration of an acoustic switch based on contraction or expansion of
a controllable active layer: (a) nonconductive state, (b) conductive state.
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Fig. 2. A 2D primary structure: (a) component containing two synchronous
acoustic switches, (b) and (c) the illustrations of the conductive and
nonconductive states, and (d) circuit admittance analogy considering wave
propagation along the x–axis in (a).
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where the homogenized material properties can be given as (Taking
P ¼ P x � Vtð Þ, P ¼ E; ρð Þ as a specification) [28]

E ¼ hEξi2=hξi � V2hρEξi;
γ ¼ 2V hρξihEξi=hξi � hρEξi½ �;
ρ ¼ hρEξi � V2hρξi2=hξi;

8><
>: ð11Þ

where ξ ¼ 1= E � ρV2� �
, and V satisfies Eq. (1) in 1D form, i.e.,

V ¼ �@P=@t � @P=@xð Þ= @P=@xj j2. Note that the expressions in Eq. (11)
were first formulated for arbitrary STMCMs by Lurie [24]. Let f i ¼ 0,
Eq. (10) has a travelling wave solution,

u1 ¼ f x � c1tð Þ þ g x � c2tð Þ; ð12Þ
where

c1 ¼ �γþ
ffiffiffiffiffiffiffiffiffiffiffi
γ2þ4ρE

p
2ρ

c2 ¼ �γ�
ffiffiffiffiffiffiffiffiffiffiffi
γ2þ4ρE

p
2ρ

8><
>: ð13Þ

If c1 is positive, f x � c1tð Þ is a wave propagating along the þx‐
direction with speed of c1j j, and g x � c2tð Þ is a wave propagating along
the �x‐direction with speed of c2j j. In general,

c1j j– c2j j: ð14Þ
This feature is quite different from traditional materials with iden-

tical wave velocity in opposite directions (i.e., c1j j ¼ c2j j). For complex
c1 with nonzero imaginary part, travelling wave cannot emerge in
STMCMs, where the waves are localized near the wave source that is
similar to the Saint‐Vilan principle. In brief, Eqs. (12) to (14) demon-
strate the asymmetric wave property in STMCMs (more details can be
found in Appendix A).

In the derivation of Eq. (5), one retains the basic assumptions of Eq.
(4), resulting in four difficult problems for experimental realization of
the STMCMs. First, as shown in Eq. (4), the external fields that modu-
lating the property should have no coupling with stress or momentum
of the modulated system. Otherwise, additional equation should be
introduced. Second, the mechanical system should obey the momen-
tum conservation and volume invariance (at the mechanically equilib-
rium state) globally. Otherwise, strong nonlinearity would be
introduced (refer to Appendix B), and the local initial state of the
material would change with time [28]. Third, both the modulus and
density should be time‐varying. Otherwise, γimn ¼ 0, resulting in the
disappearing of the asymmetric wave property. Forth, in the homoge-
nization limit, ɛ4 ! 0, which indicates that the modulating frequency
of local property should be extremely high. To summarize, the struc-
ture/material requirements of STMCMs make it quite challenging for
the design and fabrication, and traditional strategies of structural
material design fail to meet these requirements. As a result, though
STMCMs is highly promising for uses in many applications, such as
cloaking, acoustic information processing, ideal vibration isolation,
ultrasonic technology, a rational design for their realization is still
challenging. To this end, we propose a novel scheme for realizing
STMCMs by designing topology‐modulable structures, which are pre-
sented as the following three levels.

3. Primary structure: acoustic switch

The wave behaviors are directly determined by the material prop-
erties in its propagation path. Thus, a simple idea is that the material
properties can be tuned by modulating the wave propagation path.
Such strategy can be achieved by designing structures with modulable
topologies. Inspired by the switch of circuits that can change the cur-
rent path, an “acoustic switch” is proposed. An acoustic switch is illus-
trated in Fig. 1. The open and close of switch is from contraction or
expansion of a controllable active layer, which can be realized by a
lot of smart materials, e.g. the piezoelectric ceramics. Note that width
of the separation gap at the nonconductive state should be small to
3

ensure rapid switch, and the compressive stress produced by the active
layer at the conductive state should be large enough to ensure reliable
connection. Meanwhile, the wavelength λ should be far larger than the
size of the whole switch to avoid remarkable local effect arising from
contraction or expansion of the active layer that would produce stress
pulses.

To demonstrate the feasibility of the acoustic switch, a virtual pro-
totype is established by using COMSOL software. As shown in Fig. 2, a
two‐dimensional (2D) primary component consists of two square rings.
The thickness of the primary component is 2 mm and its in‐plane sizes
are ax � ay ¼ 1:5

ffiffiffi
2

p � 3
ffiffiffi
2

p
mm2. The left ring is made by material A.

The right one is made by material B with two synchronous lead zir-
conate titanate (PZT) based switches. Material A maintains continuous
connectivity to ensure structural integrity. Illustration of the conduc-
tive and nonconductive states of the switches are shown in Fig. 2(b)
and (c), respectively. Considering wave propagation along the x–axis
, one can make an admittance analogy between the primary compo-
nent and a circuit as shown in Fig. 2(d). In this analogy, there are
the following analogy pairs: force ~ current I, velocity ~ voltage U,
mass ~ capacitance C, modulus ~ reciprocal of the inductance 1=L,
damping ~ reciprocal of the electric resistance 1=R, and force resis-
tance and reactance ~ admittance Y. The current can flow through
the green and blue components at the same time as the switch is
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turned on while it can only flow through the blue components as the
switch is turned off, that is,

Uon ¼ I Y�1
A þ Y�1

B

� � ð15Þ

Uoff ¼ I=YA ð16Þ
Note that the property of the circuit can be described by the equiv-

alent admittance that are Y�1
A þ Y�1

B

� ��1 and YA at conductive and
nonconductive states, respectively. Similarly, the acoustic switch can
be expected to exhibit the function of the equivalent acoustic control.

A steady‐state response analysis is performed to demonstrate the
state switch function driven by external voltages, following by a har-
monic response analysis to demonstrate the rapid response ability as
required by STMCMs. The material properties are listed in Table 1.
Considering the wavelength λ far larger than the size of primary com-
ponent, only the internal force needs to be considered in the primary
component, and the thermal expansion is ignored. Meanwhile, peri-
odic boundaries are adopted at the dotted frame in Fig. 2(a), the inter-
nal boundaries in the switches are set as contact pairs with initial gap
width of 0.5 μm, and other boundaries are free. The driven voltage,
i.e., the electric potential difference along the z0 or z0 0

–axis in the
whole PZT, is U. In the steady‐state response analysis, we can find that
U of 0 and above 10 V can obtain nonconductive and reliable conduc-
tive states, respectively. The connection states at different driven volt-
ages are shown in Fig. 3. The harmonic response of the state switch
driven by harmonic voltages and characterized by total displacement
of point P (Fig. 2(a)), is shown in Fig. 4. It can be expected that the
switch exhibits best working state at f 0 ¼ 265 kHz, which meets the
requirement of high switch frequency for constructing STMCMs.

4. Secondary structure: Hybrids of an array of conductive
acoustic switches and the other array of nonconductive acoustic
switches

Starting from the proposed primary component, various spatio‐
temporally modulable structures can be constructed as inspired by
the structure of the pixel point array [24,35]. To be specific, a primary
component is similar to a pixel in a display, in which the properties
(e.g. the modulus and density) are similar to the displayed color of
the pixel. Similarly, the primary component array of acoustic switches
can display material property distribution arbitrarily over time. MPI is
the precondition for constructing the STMCMs due to the requirement
of spatial and temporal order according to Eq. (1) [33]. The simple
MPI is the static property interface (MPI with V ¼ 0), which will be
constructed as an example to demonstrate feasibility of this strategy.

4.1. Hybrid structure with a static property interface

Fig. 5(b) demonstrates two adjacent arrays of the primary compo-
nents. The switches in the left part (x < 100ax) of Fig. 5(b) are con-
nected (voltage is 15 V, Fig. 5(a)), while switches in the right part
Table 1
Material properties in the primary component.

Materials Density (kg/m3) Young’s modulus (GPa) and Poisson’s ratio/Elasticity m

Material A * 2730 69 and 0.33
Material B 7850 200 and 0.30
PZT-8 7600 146:9 81:09 81:05

81:09 146:9 81:05
81:05 81:05 131:7
31:35
31:35
32:89

2
6666664

3
7777775

* Material A is adopted from the Aluminum 3003-H18; material B is adopted from
cylindrically symmetric (1mm) materials and the 3-direction is along the expansi

4

(x > 100ax) are disconnected (voltage is 0, Fig. 5(a)). The magnified
view (the marks refer to Fig. 2(b, c)) in Fig. 5(b) demonstrates inter-
face structures. To demonstrate its function, a longitudinal plane wave
incidents from the left boundary (displacement

u1 ¼ 10�6 exp �4� 109 t � 4:243� 10�5� �2h i
(SI)) is simulated. The

wave length is much larger than ax. The wave induced displacement
along the x–axis (u1) on a path parallel to x–axis is shown in Fig. 5
(c), where the path is shown in Fig. 5(b) by a yellow line in the mag-
nified view. Note that the discontinuity of the curves in Fig. 5(c) is due
to the material discontinuity along the path.

For 1D long wave, dynamic properties of the arrays (Fig. 5(b)) can
be characterized by homogenized wave velocity c and wave impe-
dance z, where c can be directly recognized by wave propagation
frames. The homogenized Young’s modulus E can be calculated by a
uniaxial tensile test along the x–axis (Fig. 5(d)). To be specific, an
apparent pressure of 235.7 Pa is applied at the left boundary and the

right boundary is fixed. Considering the relation c ¼
ffiffiffiffiffiffiffiffi
E=ρ

p
(Eq. (9)),

one can obtain the homogenized density

ρ ¼ E=c2; ð17Þ
The homogenized material properties can be verified by the appar-

ent reflected coefficient Ri;j and transmitted coefficient Ti;j, which are
well‐known as

Ri;j ¼ zi�zj
ziþzj

;

Ti;j ¼ 2zi
ziþzj

;

8<
: ð18Þ

where the Latin subscript are free indexes, zi ¼
ffiffiffiffiffiffiffiffi
Eiρi

p
. The indexes can

be taken as “” that figuratively means array with nonconductive
switches, or taken as “$” that figuratively means array with conductive
switches. The subscript “i; j”means that the incident wave is from mate-
rial i, then transmits through the interface between material i and j, and
finally propagates to material j.

According to Fig. 5(c), the homogenized wave velocities are
extracted as c ¼ 1124 m/s and c$ ¼ 3182 m/s. From Fig. 5(d), the
homogenized Young’s moduli are calculated as E ¼ 3:978 GPa and
E$ ¼ 29:33 GPa. According to Eq. (17), the homogenized densities
are obtained as ρ ¼ 3149 kg/m3 and ρ$ ¼ 2897 kg/m3. It is interest-
ing that the array with conductive switches demonstrates a smaller
homogenized density. Furthermore, the theoretical propagation coeffi-
cients can be calculated as (Eq. (18)) R$; ¼ 0:444 and T$; ¼ 1:444,
which shows a difference of below 6% compared to the simulated
results (Fig. 5(c), R$; ¼ 0:469, T$; ¼ 1:464) and indicates the validity
and rationality of the homogenization method. A series of simulations
are performed to investigate the effect of component properties on the
homogenized properties, which demonstrate the excellent property‐
modulation ability of the primary structures Fig. 6. In addition, it is
found that the mixed rules of the moduli and densities are similar to
Eq. (11) (V ¼ 0), i.e., the Young’s modulus and homogenized density
can be written as,
atrix ** (GPa) Coupling matrix ** (C/m2) Relative permittivity ** Loss factor

— — —
— — —

10:34 0
10:34
�3:875 �3:875 13:91

2
4

3
5 904:4

904:4
561:6

2
4

3
5 0

the High-strength alloy steel. ** The matrixes are given in local coordinates for
on direction (refer to z

0
and z

0 0
–axis in Fig. 3).
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E ¼ a1 þ a2=EA þ a3=EBð Þ�1
;

ρ ¼ b1 þ b2ρA þ b3ρB;

(
ð19Þ

where ai and bi are constants (i ¼ 1;2;3).

4.2. Hybrid structure with a moving property interface

Section 4.1 demonstrates that the primary components can form
static interface and exhibit significant modulability of material prop-
erty. Here we demonstrate the hybrid structure with a MPI. Different
5

from the case in Fig. 5, the voltage is not static (Fig. 7(a)). The MPI
moves forward for a distance Δx ¼ VΔt in a time interval Δt, and a
switch changes between conductive and nonconductive state as the
MPI passes through it (Fig. 7(b)). Considering the state switch time
of a primary component ts > 0, the MPI has a thickness

h ¼ Vj jts: ð20Þ
ts should be half of the resonance period (Fig. 4), i.e., ts ¼ 1:9 μs for

the structure in Fig. 2. To be specific, we set V ¼ �2000 m/s, the MPI
thickness h is 3.8 mm, which is about 1.8 times of the constant of pri-
mary component ax ¼ 2:1 mm. Considering that the wavelength λ is
far larger than ax, such thickness is small enough in the homogeniza-
tion limit. Therefore, to form a sharp MPI, the switch delay time of an
acoustic switch should be short enough (Eq. (20)), i.e., the resonance
frequency should be high enough (Fig. 4). However, for a gradient
MPI, i.e., with gradient distributed material properties in the interface,
fast response of the switch is no longer necessary. Hence, forming a
gradient interface is much easier than a sharp one in this way, which
is contrary to the usual material interface.

To demonstrate the function of the MPI, a longitudinal plane wave
incidents from the left boundary (u1 ¼ 10�6 exp �4� 109 t�ð�
4:243� 10�5Þ2� (SI)) is simulated. The results are shown in Fig. 7(c),
in which we considered a typical case with V ¼ �2000 m/s. According
to the theory introduced in the previous work [27,33], as
c < �V < c$, a normal incident wave on the MPI will produce three
normal emitted waves (one reflected wave and two transmitted
waves), which is supported by the numerical results with slight error
(<8%, theoretical wavelength ratio should be λ : λR : λT : λ

0
T

�� �� ¼
V � c$ð Þ : V þ c$ð Þ : V � cð Þ : V þ cð Þj j ¼ 1 : 0:23 : 0:60 : 0:17, and

the propagation coefficients should be R$; ¼ z$ � zð Þ= z$ þ zð Þ�
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c$ þ cð Þ= c$ � cð Þ � c$ � Vj jð Þ= c$ þ Vj jð Þ ¼ 0:21, T$; ¼ 1þ R$; � T
0
$; ¼ 1:63,

and T
0
$; ¼ z$ � zð Þ=z � c$= c$ � cð Þ � c � Vj jð Þ= c$ þ Vj jð Þ ¼ �0:42,

here the symbols with apostrophe corresponds to the backward conju-
gate transmitted wave. The derivation of these equations can be found
in Refs [33,34]). To summarize, a hybrid structure with a MPI is suc-
cessfully constructed by primary components, which is expected to be
used in STMCMs.
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5. Tertiary structure: Laminated STMCMs

Layer‐by‐layer assembling of secondary structures can form a 2D
laminated STMCM [28] (Fig. 8(a)). In this STMCM, the unit cell con-
stants can be represented by ɛ ¼ ɛx; ɛy ; ɛt

� �
, where ɛx and ɛy is the spa-

tial period, and ɛt is the temporal period of the acoustic switch (Fig. 8
(b)). For the laminated STMCM,

ax ≪ ɛx ≪ λ;

ɛy ¼ ay ;
ɛt ¼ ɛx= Vj j:

8><
>: ð21Þ

The first line in Eq. (21) indicates that the STMCM is a three‐level
composite. Fig. 8(c) demonstrates the voltage–time curve of one acous-
tic switch in the STMCM, and the right adjacent one has the similar
curve but a phase shift of

Δφ ¼ � 2πax
ɛx

V
Vj j : ð22Þ

According to Eq. (21), in the design of an acoustic switch, the work-
ing frequency f 0 (Fig. 4) should meet

f 0 ¼ 2π
ɛt

¼ 2π
Vj j
ɛx

: ð23Þ

To demonstrate the function of the laminated STMCM, two longitu-
dinal plane waves incident from the left and right boundaries

(u1 ¼ 10�6 exp �4� 107 t � 6:364� 10�4� �2h i
(SI)) are simulated.

The results are shown in Fig. 8(d), in which V ¼ 1000 m/s,
ɛx ¼ 10ax, i.e., ɛt ¼ 21 μs (Eq. (21)) and the switch frequency should
be f 0≈299 kHz (Eq. (23)). According to the theory in the previous
work [24,28] and that introduced in Section 2, the normal incident
waves from opposite directions have different group velocities, i.e.,
homogenized wave velocity (Referring to Eq. (13), the theoretical
group velocities should be 1230 m/s along the þx‐direction and
1310 m/s along the �x‐direction). These results are supported by
the numerical simulations with an error of below 20%. It should be
noted that this error arises from the numerical challenging in the sim-
ulation of a time dependent/energy opening oscillating system
[28,36]. In summary, a laminated STMCM is successfully constructed
from the hybrids of arrays of acoustic switches, which provides an
implementation scheme for STMCMs.

6. Closing remarks

In summary, this work proposes an implementation scheme for the
realization of STMCMs and demonstrates its fantastic performances.
2
7

3
0
 

3
5

8
3
 

4
4

3
7
 

5
2

9
0
 

6
1

4
3
 

6
9

9
7
 

7
8

5
0
 

2232  (kg/m3)    4729 

0

7850

6997

6143

5290

4437

3583

2730

2
7

3
0

3
5

8
3

4
4

3
7

5
2

9
0

6
1

4
3

6
9

9
7

7
8

5
0

2048  (kg/m3)    4294

 (kg/m3)  (kg/m3) 

 
(k

g
/m

3
) 

b 

the secondary structure. The calculated homogenized properties are
¼ 0:0044þ 1:784=EA þ 1:295=EBð Þ�1 (Unit: GPa; R-square: 0.9913),

4ρA þ 0:1658ρB (Unit: kg/m3; R-square: 0.9999).
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The spatio‐temporally modulated properties of the proposed STMCMs
are realized by acoustic switches that could rapidly disconnect or con-
nect the propagation path of the elastic waves upon external signals.
The demonstration are supported by both theory and numerical simu-
Fig. 8. A laminated STMCM: (a) three level structures of a laminated STMCM; (b
difference in an acoustic switch; (d) simulated long elastic waves (ax ≪ ɛx ≪ λ) pro
provided, and the solid lines represent the fitting curves using Gauss function).

7

lations, demonstrating the feasibility of the implementation scheme
for STMCMs. This work sheds light on the experimental realization
of STMCMs.

CRediT authorship contribution statement

Langquan Shui: Conceptualization, Methodology, Software, Writ-
ing ‐ original draft, Visualization, Supervision, Funding acquisition.
Jiaojiao Guo: Validation, Formal analysis, Data curation, Visualiza-
tion. Enlai Gao: Methodology, Resources, Writing ‐ review & editing,
Supervision, Funding acquisition. Ze Liu: Writing ‐ review & editing,
Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This work is supported by the National Natural Science Foundation
of China (11632009, 11872284, 11902225, 11902226) and Funda-
mental Research Funds for the Central Universities (413000111,
413000114).

Appendix A. Comparison of the wave properties between
traditional structural composites and STMCMs

One can describe the wave properties by the group velocity sur-
faces. As examples, the group velocities of two laminated composites
that are governed by Eqs. (3), (5), and (10) are illustrated in
Fig. A1, which demonstrates the difference of wave properties
between traditional structural composites and STMCMs. The material
properties and formula for group velocity calculation in Fig. A1 can
be referred below.

For simplification, Eqs. (3) and (5) are rewritten in an unified form
as following [28]

@

@xα
λiαmβ

@um
@xβ

� �
¼ �f i; ðA:1Þ
) a spatio-temporal unit cell of the STMCM; (c) the voltage electric potential
pagating through the STMCM (the original data from numerical simulation is
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Fig. A1. Group velocities of a traditional laminated composite (green lines)
and laminated STMCM (red lines). ci refer to Eq. (A.2), and c1 and c2 refer to
Eq. (13). The curves mean the positions that the disturbance at the origin can
propagate to in an unit time. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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where λiαmβ ¼ λδiαδmβ þ μ δimδαβ þ δiβδαm
� �� μþ ρð Þδα4δβ4δim, λ and μ are

the homogenized Lame constant; the Latin index takes 1 to 3, and the
Greek index takes 1 to 4 and “4″ corresponds to time t. When α; β–4,
λiαmβ degenerates to the Adiabatic elastic tensor; when α; β ¼ 4 and
i ¼ m, �λiαmβ degenerates to the homogenized density ρ; otherwise,
λiαmβ ¼ 0. Obviously, γimn ¼ λi4mn þ λinm4, ρi ¼ �λi4 i 4. By using the sym-

bol λiαmβ, the material properties (adopted from Shui et al. [28]) is listed
Table A1
Material properties of a laminated traditional composite for Fig. A1 (Normal directi

iα mβ

11 22 33 23 32 13

11 126 53.9 53.9
22 53.9 243.0 89.0
33 53.9 89.0 243
23 76.9 76.9
32 76.9 76.9
13 35.9
31 35.9
12
21
14
24
34

8

in Tables A1 and A2 for a traditional laminated composite and lami-
nated STMCM, respectively.

Considering a wave with a circular frequency of ω:
ui ¼ Ui exp

ffiffiffiffiffiffiffi�1
p

kjxj � ωt
� �� 	

, where the amplitude Ui determines the
polarization direction, and kj is the wave vector. For Eq. (5), the dis-

persion relation can be derived as λijmnkjkn � γimnknω� ρ i δimω
2

��� ��� ¼ 0.

Then one can derive the group velocity as

ci ¼ @ω

@ki
¼ 2λkimnkn � γkmiω

� �
UkUm

γqrsksUrUq þ 2ωρsU
2
s

: ðA:2Þ

Note that ω in Eq. (A.2) is a function of the direction of a wave vec-
tor, and it can be solved by the dispersion relation. In particular, by let-
ting γkmi ¼ 0 and ρi ¼ ρ, Eq. (A.2) is also valid for Eq. (3).

Finally, by using Eqs. (A.1) and (A.2) and the parameters given in
Tables A1 and A2, the group velocities can be calculated (Fig. A1).

Appendix B. Notes for the momentum conservation in STMCMs

The 1D situation with a uniform time‐varying density (here the
modulus has no effect on momentum and is set as passive) is consid-
ered (any time‐varying property can be transformed into a combina-
tion of a serials of the elementary uniform time‐varying property).
Considering a material with property

P ¼ P1; t < t0;
P2; t ≥ t0;



ðB:1Þ

where Pi ¼ E; ρið Þ; i ¼ 1; 2.
Suppose that there is a travelling wave u1 x � c1tð Þ (ci ¼

ffiffiffiffiffiffiffiffiffi
E=ρi

p
) in

the material before the time t0. At the time oft0, the density of the
material increases by Δρ ¼ ρ2 � ρ1, and the momentum increases by
Δp. Based on the momentum theorem ρ1 þ Δρð Þv20 ¼ ρ1@u1=@t þ Δp,
where v20 is the particle velocity after the density change,
v20 ¼ ρ1=ρ2 � @u1=@t þ Δp=ρ2. Furthermore, according to the wave
equation c22@

2u2=@x2 ¼ @2u2=@t2; x; tð Þ∈R� t0;þ1½ Þ, we have a
D’Alembert travelling wave solution as

u2 ¼ z2 þ z1
2z2

u1 x � c2tð Þ þ z2 � z1
2z2

u1 x þ c2tð Þ þ 1
2z2

�
Z xþc2 t

x�c2 t
Δpdx; t ≥ t0; ðB:2Þ

where zi ¼
ffiffiffiffiffiffiffi
Eρi

p
.

Eq. (B.2) indicates that the waveforms change as the momentum
changes, i.e., the linear property of the wave equation is broken. It
can be expected that different mechanisms of density change can
induces different forms of Δp, and Δp may relate to the current defor-
mation and velocity. In most cases, the existence of Δp would make the
issue difficult to be addressed. For the sake of simplicity, we consider
on of the layers is along the xaxis. Units: GPa, kg/m3).

31 12 21 14 24 34

35.9
35.9

35.9 35.9
35.9 35.9

–8000
–8000

–8000



Table A2
Material properties of a laminated STCMM for Fig. A1 (Normal direction of the layers is along the x–axis. Units: GPa, kg/s/mm2, kg/m3).

iα mβ

11 22 33 23 32 13 31 12 21 14 24 34

11 91.5 50.1 50.1 –2.17
22 50.1 241 87.4 –93.0
33 50.1 87.4 241 –93.0
23 76.9 76.9
32 76.9 76.9
13 25.4 25.4 –2.57
31 25.4 0.763 –2.57
12 25.4 25.4 –2.57
21 25.4 0.763 –2.57
14 –2.17 –93.0 –93.0 –8030
24 –2.57 –2.57 –8130
34 –2.57 –2.57 –8130
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Δp≡0: ðB:3Þ
Appendix C. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.compstruct.2020.112601.
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