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Poisson’s ratio of two-dimensional hexagonal materials under finite strains

Xiangzheng Jia*, Xiaoang Yuan®, Han Shui, and Enlai Gao

Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, China

ABSTRACT

Herein, we developed a bead-spring model to predict the Poisson’s ratios of two-dimensional hex-
agonal materials under finite strains. The predicted strain-dependent Poisson’s ratios were sup-
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ported by simulations. The bounds on the Poisson’s ratios of two-dimensional hexagonal materials

under finite strains (-1/3, +o00) were established. The underlying mechanism for the strain-depend-
ent Poisson’s ratios was uncovered as the interplay between bond stretching and angle bending
during the stretching. These findings indicate that, even for the simplified material system under
finite strains, there is no upper bound on the Poisson’s ratios, and that there is plenty of room for

strain-engineering the Poisson’s ratios.

1. Introduction

The successful exfoliation of graphene from bulk graphite
[1] has stimulated considerable interest in two-dimensional
(2D) materials [2-4], and most of the known 2 D materials
are hexagonal (named as 2D hexagonal materials, 2DHMs)
[5, 6]. The mechanical behaviors of 2DHMs have been
widely explored by theories [7, 8], simulations [9-12] and
experiments [13], among which the Poisson’s ratio offers a
fundamental metric for the elastic behavior.

Poisson’s ratio for most materials is positive, while a few
auxetic materials exhibit a negative Poisson’s ratio (NPR)
[14], that is, the materials with the property of transversally
expanding rather than shrinking when uniaxially stretched.
Materials with NPR are promising for uses in many applica-
tions, including enhancing toughness, shear and indentation
resistance [15]. Originally, Poisson’s ratio is defined for
small elastic strains, and thereafter this measure has been
generalized for finite strains [16], in which the Poisson’s
ratio depends on the subjected strain. The Poisson’s ratio of
many commonly used materials is strain-dependent [17-20],
providing additional room for tailoring fantastic properties.
Ma et al. [19] demonstrated an unprecedented feature in Pd
decorated two-dimensional boron sheet, which expands nor-
mal to the direction of stress, regardless of whether it is
stretched or compressed. Jiang et al. [20] observed a transi-
tion from positive Poisson’s ratio to NPR for graphene
sheets under finite strains.

NPR of 2DHMs has been extensively studied. Grima
et al. [21, 22] found that graphene can be modulated to
exhibit NPR by introducing defects that wrinkle the planar
sheet. Ho et al. [23] tailored the Poisson’s ratio of graphene
by patterning periodic rectangular voids of different aspect
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ratios. Wan et al. [24] showed that the modification of oxi-
dation degree can tune the NPR of graphene oxide. Jiang
et al. [25] demonstrated that NPR of hydrogenated graphene
can be achieved by modulating the percentage of hydrogen-
ation. Qin et al. [26] performed molecular dynamics simula-
tions and observed NPR in the rippled graphene.
Zakharchenko et al. [27] observed NPR of graphene by per-
forming atomistic simulations at extremely high temperature
arising from the thermally induced ripples. These explora-
tions indicate that the NPR of 2DHMs can be produced by
either introducing defects or wrinkles or ripples. Beyond
such processing, Jiang et al. [20] found that an intrinsic
NPR emerges in graphene as a result of the interplay
between two deformation modes, that is, bond stretching
and angle bending. More recently, we developed a mechan-
ics model of 2DHMs for small strains and predicted the
bounds on the Poisson’s ratios of 2DHMs as (-1/3, +1)
[28]. However, this study has focused on the Poisson’s ratios
of 2DHMs for small strains, leaving the bounds on the
Poisson’s ratios of 2DHMs under finite strains unexplored.

In this work, we generalized the bead-spring model of
2DHMs into the region of finite strains. Based on this
mechanics model, the strain-dependent Poisson’s ratios of
2DHMs were predicted. Atomistic simulations supported
these predictions. The extended bounds on the Poisson’s
ratios of 2DHMs under finite strains were established as (-1/
3, +00). Finally, the underlying mechanism for the strain-
dependent behavior of Poisson’s ratios was revealed as the
interplay between the deformation modes of bond stretching
and angle bending.
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Figure 1. (a) lllustration of 2DHMs. 2DHMs were stretched along the (b) armchair (AC) and (c) zigzag (ZZ) directions, respectively.

2. Methods

Atomistic simulations were performed by large-scale atomic/
molecular massively parallel simulator (LAMMPS) [29]. The
bond stretching energy is V, = ky(d-dy)?, and the angle
bending energy is V, = ko(0-0,)%, where ky, dy (d), kg, and
0o (0) represent the bond stiffness, equilibrium (deformed)
bond length, angle stiffness, and equilibrium (deformed)
angle, respectively. Herein, a dimensionless factor 4 = ky/
(kpdy®) is defined to characterize the ratio of angle bending
resistance to bond stretching resistance, which measures the
contributions of bond stretching and angle bending to over-
all deformation. As a reference, the values of A for typical
2D materials (0.095 for graphene, 0.081 for h-BN, 0.063 for
MoS,, 0.065 for silicene, 0.033 for silica, and 0.092 for black
phosphorus [3, 4]) were collected for comparison. Without
loss of generality, unitless simulations were conducted, in
which the referenced quantities of energy and length were
set as ¢ and o, and hence d, and k;, were used as 1o and 1¢&/
o°, respectively. To explore the effect of A on the Poisson’s
ratios, kg was adopted as Ae. Then, a unit cell of 2DHMs
within in-plane periodic boundary conditions was con-
structed to avoid the size effect. The zigzag (ZZ) and arm-
chair (AC) directions were set to be parallel to the x and y
axes, respectively (Figure 1(a)). Uniaxial tensile strain was
applied on the 2DHM samples along the x (y) direction
with different 4 while the freedom in the other direction
was fully energy minimized. During the stretching process,
the increment of tensile strain was 1% per step, and the
strain to failure of bond was set as 16%.

3. Results and discussion
3.1. Mechanics model

Gillis et al. [30] developed a bead-spring model correlating
the bond and angle stiffnesses with the elastic properties of
hexagonal graphite. Afterward, this model is adopted for
uses in the study of Poisson’s ratios as well as other mech-
anical properties of 2DHMs for small strains [3, 28]. Herein,
we generalize the bead-spring model into the region of finite
strains to explore the strain-dependent behaviors of
Poisson’s ratio for 2DHMs. The force induced by bond
stretching and the torque induced by angle bending can be

described as f = ky, (d-dp) and T = ky (0-0,), respectively.
When the 2DHM is stretched along the AC direction with a
tensile force of 2 F, the unit cell of 2DHM deforms as shown
in Figure 1(b). Considering the deformed configuration, F
can be decomposed into two components as

fi =Fsin(n/6 + A0/2), (1
f» = Fcos (n/6 + AG/2), 2)

which are parallel and perpendicular to the bond, respect-
ively. Here A0 is the angle change. The bond length changes
induced by f; and 2 F can be described as Ad;, = fi/k, and
Ad, = 2 F/ky, respectively. Due to the cooperative deform-
ation of angles in the hexagonal ring [30], the angle change
can be derived as

f2(do + Ady)
A =" ——7
0 3ky )
Combining Egs. (1)-(3), A0 can be derived as
Aj — Fcos(n/6 + A0/2)[dy + Fsin (n/6 + A0/2) k) @

3kg

Based on this equation, A0 can be calculated by numer-
ical methods. In this work, an algorithm combining bisec-
tion, secant, and inverse quadratic interpolation methods
[31] was adopted to obtain Af.

Figure 1(b) shows that the original size of the unit cell
is \/3dy x 3dy/2, while the deformed size can be written
as 2(dy+Ad;)cos(n/6 + AO/2) x [dy+Ady+(dy+Ad,)sin(n/6 +
A0/2)]. Thus, the strain can be obtained by

Ax  2(dy + Ady) cos (n/6 + AO/2) — \/3dy

" e Vady ©
. Ay :Adz—i-do—i-(d0+Ad1)sin(n/6+A0/2)—3d0/2
7 3dy /2 3d,/2 '
(6)
The instantaneous Poisson’s ratio is given as
vy = —g—i; (7)

Hence, the strain-dependent Poisson’s ratios of 2DHM
under finite strains can be predicted in the framework of
such bead-spring model.
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Figure 2. Stress-strain curves of 2DHMs having different A when stretched along the (a) AC and (b) ZZ directions, respectively. Transverse-tensile strain curves with
different / when stretched along the (c) AC and (d) ZZ directions. Herein, the dots represent the atomistic simulation results and the lines are from the theoret-

ical prediction.

Similarly, as the 2DHM is stretched along the x (ZZ) dir-
ection (Figure 1(c)), the corresponding Poisson’s ratio of
2DHM can also be derived. Considering the deformed con-
figuration, the force F can be decomposed as

fi = Fcos(n/6 — AG/2),
fo =Fsin(n/6 — A0/2).
Combining Egs. (3), (8) and (9), A0 can be derived as

_ Fsin(n/6—A0/2)[dy + Fcos(n/6 —A0/2)/ky)
- 3ky

(8)
€)

A0 . (10)

Figure 1(c) shows that the deformed size of the unit cell is
2(dy+Ad,)cos(n/6-A0/2)x [dy+(dy+Ad,) sin(n/6-A6/2)]. Hence,
the strain can be obtained by

Ax  2(dy+ Ady) cos (n/6 — AB/2) — \/3d,

& = = 11
\/§d0 \/§d0 ( )
Ay  do+(do+Ad))sin(n/6 —AO/2) —3dy/2
&= = . (12)
3d()/2 3d()/2
The instantaneous Poisson’s ratio can be derived as
B de, 13)
Y= O,

Notably, previous work [28] on 2DHMs for small strains
assumed that the structural symmetry does not change

during stretching, and thus changes of A0 and Ad are negli-
gible. Therefore, the Poisson’s ratio is strain-independent. In
this work, we consider finite strains that result in the break-
down of structural symmetry, and thus A0 and Ad cannot
be neglected.

3.2. Atomistic simulations

To verify the model prediction, we performed unitless atom-
istic simulations of uniaxial tensile tests on 2DHMs. kg is set
as Ae, where A is adopted as 0.001, 0.01, 0.1, 1 and 10,
respectively. For small strains, the Poisson’s ratio only
depends on the value of A [28]. However, under finite
strains, the Poisson’s ratio depends on both A and the
applied strain. The stress-strain responses and transverse-
tensile strain responses of 2DHMs when applying uniaxial
strain were recorded in Figure 2. The model predictions
(lines) were well supported by direct atomistic simula-
tions (dots).

When 4 is relatively large, the deformation is dominated
by bond stretching, making the structure extremely stiff;
when A is relatively small, the deformation is dominated by
angle bending, and thus the structure becomes soft, which
results in the increase of ductility. The slopes of the stress-
strain curves increase as A increases (Figure 2(a) and (b)),
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Figure 3. The Poisson’s ratio of 2DHMs having different 4 as a function of tensile strain when stretched along the (a) AC and (b) ZZ directions. (c) Effect of A on the
peak values of strain-dependent Poisson'’s ratio. (d) The anisotropy degree u when subjected to tensile strain.

indicating the increase of Young’s modulus. Furthermore,
for tensile tests along the ZZ direction (Figure 2(b)), the
tensile strength increases while the strain to failure decreases
as / increases. As for tests along the AC direction (Figure
2(a)), the strain to failure decreases while the tensile strength
remains constant as A increases. This behavior of tensile
strength can be explained by that Ad, is always larger than
Ad, according to the definitions, and thus the failure is
dominated by Ad,. Additionally, k, and the maximum per-
missible Ad, remain unchanged in the stretching process,
yielding the constant tensile strength.

Furthermore, as shown in Figure 2(a) and (b), when
A=10, 1 and 0.1, the stress-strain curves are linear; when
A=0.01 and 0.001, the stress-strain curves are nonlinear.
Although the styles of bonds and angles are harmonic, the
interplay between bond stretching and angle bending results
in the linear and nonlinear mechanical behaviors. Notably,
when 4=0.001, the nonlinear curve transforms to linear
curve as strain increases. In this case, the deformation is
dominated by angle bending at the beginning of the stretch-
ing, and thus the curves are nonlinear. However, as the
strain increases until that there is no plenty of room for
angle bending, the deformation mode will undergo a transi-
tion from angle bending to bond stretching, which results in

the linear region. When 4=0.01, the deformation is also
dominated by angle bending but needs larger strain to
achieve the transition of deformation mode, while the struc-
ture fails before the linear region emerges. When 1=0.1, 1
and 10, the deformation is dominated by the bond stretch-
ing, in which the bond can be elongated until failure.
Hence, there is no such transition of deformation modes,
and the stress-strain curves almost keep linear.

In addition, as shown in Figure 2(c) and (d), when
A=10, 1 and 0.1, the transverse-tensile strain curves are lin-
ear; when 2=0.01 and 0.001, the curves are nonlinear, and
the absolute value of the slope firstly increases and then
decreases as strain increases. Specifically, the curves become
flat as strain increases when A=0.001. The transverse strains
are regulated from negative to positive values when A
increases, indicating the NPR behavior. Furthermore, the
Poisson’s ratio is highly strain-dependent when subjected to
uniaxial tensile strain as shown in Figure 3(a) and (b). The
different behaviors of 2DHMs along the two directions are
mainly caused by the breakdown of structural symmetry.
Positive Poisson’s ratio decreases to negative value as A
increases. Then, when A is quite small (for example, 1 =
0.001), the Poisson’s ratio is highly strain-dependent, which
increases from 1 (consistent with the upper bound for small
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Figure 4. Effect of 4 and tensile strain on the Poisson’s ratios of 2DHMs when stretched along the (a) AC and (b) ZZ directions.
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Figure 5. The calculated A6 of 2DHMs with different A when the strain is applied along the (a) AC and (b) ZZ directions. The strain-dependent Poisson’s ratios of
2DHMs is induced by the interplay between deformation modes of bond stretching and angle bending.

strains [28]) to the peak value and then rapidly decreases
toward 0. The underlying mechanism will be discussed later.
As A increases, the Poisson’s ratio becomes less dependent
on strain, since the structural symmetry is increasingly pre-
served during the stretching because of the increase of angle
bending stiffness. Figure 4 summarizes the Poisson’s ratios
of 2DHMs as functions of 4 and the strain.

Finally, the Poisson’s ratio approaches —1/3 when 4= 10,
indicating that the lower bound at finite strains is the same
as our prediction for small strains [28]. When A is toward
infinity, the angle is too stiff to bend, which means that A0
equals to approximately 0 in Egs. (5) and (6) and Egs. (11)
and (12). Also, the transverse-tensile strain curves are linear
when / is toward infinity, indicating the Poisson’s ratio as

Oety) _ &y _ 1

Iy Hw 3

However, the maximum value of strain-dependent
Poisson’s ratio increases as A decreases, suggesting that there
is no upper bound on the Poisson’s ratios of 2DHMs under
finite strains (Figure 3(c)). Additionally, we defined a
dimensionless parameter u = lg(v,/v,) to evaluate the

v (14)

y(x)

anisotropy of Poisson’s ratios. Figure 3(d) shows that p
becomes less strain-dependent as A increases. These results
can be explained by the symmetry of 2DHMs during
stretching. The isotropic Poisson’s ratio of 2DHMs for small
strains is due to the unaltered rotational symmetry of
2DHMs. When A is relatively large, bond stretching domi-
nates the deformation of 2DHMs and maintains the struc-
tural symmetry, and hence u approaches 0 because of the
isotropic feature. Otherwise, the symmetry will be broken by
applied uniaxial strains, which results in the remarkable
anisotropic Poisson’s ratio and highly strain-dependent u.
Furthermore, when the strain-dependent Poisson’s ratio
reaches the peak value, the corresponding strain along the
AC direction is 1/3, larger than that along the ZZ direction
(2v/3/3 — 1), as shown in Figure 3. When 1 is relatively
small, there will exist a strain range that v, still increases
while v, rapidly decreases as the tensile strain increases,
resulting in the dramatic increase of p. The smaller 4 is, the
more drastically the Poisson’s ratio changes, and the more
rapidly u increases. However, when 4=0.001, u only slightly
decreases before increases, which is attributed to that v,
increases slower than v, in this strain range.
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3.3. Mechanism

The mechanism for the strain-dependent Poisson’s ratios of
2DHMs under finite strains is explained by the interplay
between bond stretching and angle bending. When 4 is
toward 0, both the axial and transverse deformations of
2DHMs are dominated by angle bending. As the tensile
strain increases, the symmetry breaks down and the inter-
play between bond stretching and angle bending results in a
peak Poisson’s ratio. This peak Poisson’s ratio increases as A
decreases, since it induces more pronounced transverse
strain at a certain of axial deformation. However, when
angles deform to their limits, the deformation mode will
undergo a transition from angle bending to bond stretching,
which leads to a relatively small transverse deformation. As
a result, the Poisson’s ratio drops. Additionally, when
AO=2m/3 and n/3, the corresponding strains along the AC
and ZZ directions are calculated by Eq. (6) and Eq. (11) as
¢, =1/3 and & = 2/3/3 — 1, respectively. Based on these
equations, the applied strains when the strain-dependent
Poisson’s ratios of 2DHMSs having very small A reach their
peak values can be predicted, which are well consistent with
direct atomistic simulations (Figure 3(a) and (b)). With the
atomic deformation process (the inset of Figure 5(a) and
(b)), the subsequent bond stretching causes almost no trans-
verse deformation when the angle change reaches 2n/3 (n/3)
as stretching along the AC (ZZ) direction, suggesting that
the Poisson’s ratio will decrease to 0. When A is toward
infinity, the deformation is always dominated by bond
stretching, and hence the instantaneous Poisson’s ratio
remains constant (-1/3). In spite of the fact that the assump-
tion of harmonic bonds and angles are not realistic for
materials under large deformation, the Poisson’s ratios of
2DHMs should lie between the extremes as concluded from
this model study.

4, Conclusion

In summary, we developed a mechanics model for predict-
ing the Poisson’s ratios of 2DHMs under finite strains.
These results show that the lower bound on the Poisson’s
ratios is —1/3, while there is no upper bound on the
Poisson’s ratios of 2DHMs. Atomistic simulations supported
these predictions. Afterwards, the anisotropy of Poisson’s
ratio of 2DHMs as a function of tensile strain was discussed.
Finally, the underlying mechanism of strain-dependent
Poisson’s ratios of 2DHMs under finite strains was uncov-
ered as the interplay between bond stretching and angle
bending. Our work provides new insights into understand-
ing the Poisson’s ratios of 2DHMs under finite strains, and
guidelines for tuning the Poisson’s ratios by modulating the
topological interaction and strain engineering.
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