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A B S T R A C T   

Through mechanical deformation of crystalline metals with hard molds, superplastic nanomolding provides a 
simple and high-throughput method to directly form nanostructures in the metal surface. The releasing of the 
molded nanostructures generally involves in chemical etching away the mold, in which metal nanostructures 
could also be chemically attacked. Therefore, mechanical demoulding is very promising not only for solving the 
above problem, but also for drastically reducing the cost by recycling molds. As a result, the mechanics un-
derlying the mechanical demoulding is very important and highly desired since it can tell what kind of nano-
features can be released without damaging the molds. In this paper, we develop a theory for the peeling 
mechanics of elastic film with its surface nanostructures deeply embedded in a substrate. Specifically, by 
analyzing the obtained micromechanical behavior in the interface and combining it into the mechanical 
framework of the macro-bending behavior of the film, we successfully derive a nonlinear governing equation for 
demoulding. By non-dimensionalizing the governing equation and further numerically solving it, we find out a 
simple expression for the apparent adhesion work. Our theory demonstrates that the apparent adhesion work is 
mainly contributed by the interface shear stress rather than the interface energy as revealed by the peeling of 
elastic film from flat or wavy interfaces, and the fillet radius at the edge of the cavity is found to be a crucial 
factor to determine the success or failure of demoulding. Finally, by recording the real-time peeling force of an 
actual peeling process, we observe that the theoretical prediction is in good agreement with the experimental 
results. This work not only provides theoretical guidance for mechanical demoulding of molded micro-/nano-
structures, but also establishes a mechanical framework for studying the peeling mechanics of real material 
interface.   

1. Introduction 

Film peeling is a classical mechanical problem, the earliest research 
can be traced back to the study on adhesion and peeling of mica by 
Obreimoff (1930). After that, the basic mechanical model of film peeling 
(the well-known Kendall peeling model) was established (Kendall, 1971, 
1975; Rivlin, 1944). In the follow-up study, further consideration of 
inertia effect (Kinloch and Williams, 2002), dependence of peeling rate 
(Barthel, 2008; Creton and Ciccotti, 2016; Dalbe et al., 2014; Gent and 
Petrich, 1969; Muller, 1999; Persson and Brener, 2005; Shui et al., 2020; 
Shull, 2002; Tiwari et al., 2017; Villey et al., 2015), evolution of 

interfacial structure (Ghatak et al., 2004; Kaelble, 1971, 1992; Yu et al., 
2017), bio-adhesion (Khandeparker and Anil, 2007; Kong et al., 2008; 
Yin et al., 2005) and hysteresis (Israelachvili, 1992) are continuously 
enriching the breadth and depth of the research on peeling mechanics. 
Recently, the rapid development of superplastic nanomolding of metals 
to directly form large-area nanofeatures in metal surface and the highly 
desired mechanical demoulding of molded nanostructures require to 
extend the peeling mechanics to a film-substrate system with mutually 
embedded nanostructures in the interface (Liu et al., 2022). 

Nanomolding refers to a top-down fabrication method where a 
moldable material is shaped using a hard mold (Chou et al., 1997; 
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Kumar et al., 2009; Liu, 2017). Before 2017, nanomolding has been 
mainly achieved in amorphous materials such as polymers (Chou et al., 
1996; Guo, 2004; Xia and Whitesides, 1998) and bulk metallic glasses 
(Kumar et al., 2009; Li et al., 2016). The associated mechanism has been 
documented originating from viscous flow (Chiu et al., 2009; Graham, 
2006; Liu and Schroers, 2015), superimposed with capillary effect 
(Golden et al., 2013). Until recently, superplastic nanomolding in the 
crystalline state has been introduced for a very broad range of metals 
and alloys (Liu et al., 2020; Liu, 2017, 2019; Liu et al., 2019). It was 
found that the atomic diffusion itself can be the dominant deformation 
mechanism on the nanoscale (Liu et al., 2020; Liu et al., 2019). 

Although nanomolding provides a high-throughput way to prepare 
nanofeatures in variety of materials, most applications require free 
standing nanorods. Therefore, dissolution of molds through chemical 
etching is generally used, which increases the cost of mold consumption. 
Especially, many materials immersion in acidic or alkaline solutions will 
lead to the partial or even complete dissolution of the formed nano-
structures. Alternatively, mechanical demoulding has thus been 
explored (Singer et al., 2015; Xu et al., 2020), where the thinner part 
(can be either the moldable material or mold) is directly peeled from the 
formed combinations (refer to Section 2). Therefore, the mold can be 
recycled and the fabrication cost can be drastically reduced (Xu et al., 
2020). Moreover, based on this strategy, free standing nanorods of any 
moldable materials can be directly obtained because the process is free 
from chemical etching. However, it is observed that only when the 
length of molded nanorods is short, can the nanorods be mechanically 
demoulded without damage (Xu et al., 2020). Otherwise, the nanorods 

will break and leave in the mold surface (refer to Section 2). To provide 
theoretical guidance for the mechanical demoulding, the mechanics of 
peeling structured elastic film from embedded substrate should be 
considered. 

Though peeling of adhered flat (Kendall, 1971, 1975; Rivlin, 1944) 
and waved (Guduru and Bull, 2007; Peng and Chen, 2015) films has 
been well investigated, the corresponding mechanics for mechanical 
demoulding of embedded micro/nanostructures are less well developed 
(Li et al., 2018). In this study, combining theoretical modeling with 
peeling measurement, the interface shear and pull-out resistance of each 
nanopillar are proven to be the two main contributions to the apparent 
adhesion work of peeling an interface with embedded nanostructures. 
This is different from the generally studied peeling of flat or wavy 
interface where the apparent adhesion work mainly comes from the 
interface adhesion energy. Besides, the apparent adhesion work is found 
inversely proportional to the interfacial debonding length in the early 
stage of peeling, and is approximately linear with the length of the 
embedded nanopillars. Moreover, the fillet at the entrance of the mold 
cavities is distinguished as a crucial determinant of the success of me-
chanical demoulding. 

The rest of the paper is organized as follows. In Section 2, experi-
ments of nanomolding and mechanical demoulding, and corresponding 
model description are presented. By studying the deformation and stress 
states of embedded pillars (Section 3.1), and then deriving the apparent 
adhesion work of the structured interface (Section 3.2), the peeling 
behavior is theoretically analyzed in Section 3. Finally, brief concluding 
remarks are given in Section 4. 

Fig. 1. (a)-(c) Illustrations of superplastic nanomolding 
of metals by using reusable hard mold. (d) A Pt-BMG 
film was pressed into a Ni-BMG (Ni60Pd20P17B3) mold 
with nanocavities arrays. The Ni-BMG mold was fabri-
cated by compressing a Ni-BMG disc against a Si mold 
(with nanorods in the surface, the diameter of the 
nanorods is 500 nm) at 390◦C, the mean loading pres-
sure and time were 137 MPa (3.35 kN at 24.4 mm2) and 
150 s, respectively. The replicated Ni-BMG nanocavities 
arrays were subsequently freed from the Si mold by 
immersing the sample in KOH solution (with concen-
tration of 6 mol/L, 70◦C) for 5 hours, and then cleaned 
with deionized water and ethanol. (e) Typical experi-
mental set-up for mechanical demoulding of formed Pt- 
BMG film in (d).   

Fig. 2. (a)-(b) Prepared Al nanorods/microrods arrays by superplastic nanomolding of bulk Al and following mechanical demoulding (Xu et al., 2020). (c) Break of 
InBiSn nanorods arrays in the AAO mold during mechanical demoulding. 
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2. Experiments and model description 

2.1. Experimental set-up and observations 

The experimental process is briefly shown in Fig. 1(a)-(c), where a 
metal film is pressed into a mold. To increase the molding efficient, high 
temperature is generally needed. The formed combinations are then 
mechanically demoulded by directly peeling the thinner part. Typical 
result is shown in Fig. 1(d), where a Pt-BMG (Pt57. 3Cu14. 6Ni5. 3P22. 8) 
strip sheet which cut from a prepressed Pt-BMG disc (forming from zero 
to 4 kN at 260◦C, the loading rate was 0.5 mm/min) was compressed 
against a prepared Ni-BMG nanomolds at 260◦C with a loading force of 3 
kN (The preparation of the Ni-BMG nanomolds refers to the descreptions 
in Fig. 1). Finally, the formed Pt-BMG sheet was peeled along the di-
rection perpendicular to the sheet by sticking one end of the Pt-BMG 
strip sheet to a clamp (Fig.1(e)) using quick adhesive, the clamp was 
fixed onto a force sensor (MTI SEM Tester-100). The peeling process was 
monitored under an optical microscopy (KEYENCE VHX-5000) and the 
peeling force (F) during the mechanical demoulding process was 
recorded by the controlling software of the MTI SEM Tester-100. Typical 
results of prepared metal nanorods by using the abovementioned 
method are shown in Fig. 2. When the length of molded nanorods is 
short, the molded nanorods are mechanically demoulded without 
damage (Fig. 2(a) and (b)). However, for longer nanorods, it is observed 
that the nanorods break and leave in the mold surface (Fig. 2(c)). 

2.2. Model description 

Note that both the size and spacing of the nanorods are several orders 
of magnitude smaller than the film thickness in experiments (Fig. 1(d) 
and Fig. 2), as a result, the “lattice” distribution of nanorods (Fig. 2) has 
little effect on the overall deflection of the film, and deflection of the film 
can be approximated as two dimensional. Considering the typical me-
chanical demoulding process (Fig. 3), the peeling force can be generally 
along any direction. For simplicity, we assume the mold as a rigid sub-
strate because the deformation mainly occurs in the microrods/nano-
rods and the thin film during mechanical demoulding. The current and 
material coordinates are described in the same coordinate system (oxyz 
or OXYZ) (Fig. 3). The origin o is located at the interfacial crack tip. The 
y–axis is perpendicular to the paper and points inward. The thickness 

(along z-axis) and width (along y–axis) of the film are h and b, respec-
tively. The deflection, curvature and rotation of the middle plane (along 
the natural coordinate o′ s) are denoted by ζ, κ and θ, respectively. The 
displacement of the material point (X,Y,Z) in the film is 

u(X, Y, Z) = (u, v,w) = (x − X, y − Y, z − Z),

where (x, y, z) represent the current coordinates of the material point, v 
is zero under the plane strain assumption, and w = ζ at the middle plane. 
In the surface of the mold, there are arrays of cavities with a diameter of 
ϕ, the periods along x and y–axis are dx and dy, respectively. Accord-
ingly, in the surface of the film, there are molded pillars arrays with the 
same diameter and period as the mold cavities. The initial total length 
and embedded depth of a pillar (along z-axis) are L and l, respectively. 

The Young’s modulus and Poisson’s ratio of the film are E and ν, 
respectively. The apparent adhesion work of the micro-structured 
interface is denoted as Δγ. The intrinsic adhesion work between the 
film and the mold is Δγ0. The surface energy of the film and the mold is 
denoted by γF and γM, respectively, and the corresponding interface 
energy between them is denoted by γFM. By ignoring the effects of air, we 
have 

Δγ0 = γF + γM − γFM . (1) 

When the free end of the film is far from the origin, the Kendall’s 
peeling model (Kendall, 1971, 1975; Menga et al., 2018) gives the 
relationship between the peeling force (F) and the apparent adhesion 
work (Δγ) as 

Δγ =
F
b

(
1 − cosα+

εF

2

)
, (2a)  

where α is the peeling angle (Fig. 3), and εF = F/(Ehb) is the tensile 
strain near the free end of the film. It is noted that α can be larger than π, 
which can be experimentally realized by rolling the peeled part onto a 
small roller (as schematically shown in Fig. 10 (b)). Considering that the 
deformation of film cannot exceed its elastic limit in order to avoid 
damage during mechanical demoulding, then we have εF < 2% for 
metallic glasses and εF < 0.2% for typical metals. Experimentally, such 
strain constraint can be satisfied by preparing a sufficiently thick film 
and setting the peeling angle far away from 0 and 2π (i.e., 0≪α≪2π). 
For example, given α=π/2, Δγ=50 N/m, E=94.8 GPa (Pt-BMG; Wang 
(2012)), Eq. (2a) yields a film thickness requirement as h > 26 nm. 
Under these experimental conditions, one notes that 1 − cosα≫εF/2, i.e., 
the film extension along s–axis can be ignored if the completely peeled 
part of the film is sufficiently long (e.g., the situation in Section 3.2.1). 
Then Eq. (2a) can be simplified as 

Δγ =
F
b
(1 − cosα), 0≪α≪2π. (2b) 

Note that the total deformation of the film in Fig. 3 can be divided 
into two parts, i.e., the local deformation near the action location of the 
constraint of the substrate, and the global bending deformation of the 
film. The global displacement of the film surface at Z=0 can be directly 
given as 
⎧
⎪⎪⎨

⎪⎪⎩

u0 = u|Z=0 = X −

∫ X

0
cosθdX +

h
2

sinθ,

w0 = w|Z=0 = ζ +
h
2
(1 − cosθ),

(3)  

where θ is related with s, X, κ and ζ as 

dX
ds

= cosθ,
dζ
ds

= sinθ, κ =
dθ
ds
.

Fig. 3. Peeling model of an elastic film with its surface pillars embedded in 
a substrate. 
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3. Theoretical analysis of the peeling behavior 

3.1. Mechanical behavior of the pillars 

3.1.1. Tangential reaction force (along z-axis) from the cavity 
A simplified pull-out model of a pillar is considered as shown in Fig. 4 

(a), where a pillar is embedded in a semi-infinite stiff cavity with an 
embedded depth of l. A pulling-out force T is applied to the upper cross- 
section of the pillar. Under the pulling-out force, the shear reaction force 
at the contact interface between the pillar and the cavity can be assumed 
to be proportional to the contact area. Thus, the shear force (along 
z–axis) per unit length is (Fig. 4(a)) 

fμ = − πϕμ. (4)  

where μ is the interface shear strength. Considering that the cavity is 

stiff, the effect of radial pressure (pressure on the side of a pillar) can be 
ignored. Assuming that the pillar is slender, the primary beam theory 
can be adopted, and the shear force exerted on the pillar is equivalent to 
the tensile force along the axis of the pillar for simplification. 

Considering that the interface energy is important at the micro/ 
nano-scale. During the pulling-out process, the initially contacted line 
between the pillar and the cavity (near the cavity edge) may separate 
(interface separation cannot occur at the lower end of the pillar), then 
the upper contact line moves downward (with a movement distance of ξ, 
Fig. 4(c)). The surface/interface energy thus induces tension along 
z–axis at z = − ξ and z = − l. Physically, at z = − ξ = 0, the pulling-out 
process increases the free surface of the pillar, and thus induces tension 
as (the interface between the cavity and the pillar keeps closed 
throughout, Fig. 4(a) and (b)) 

F0 = − πϕγF . (5) 

Fig. 4. Stress evolution during pulling out an embedded pillar. (a)-(b) The situations without interface separation. (c) The situation with interface separation. l is the 
embedded depth. lc and lcl represent the length of the pillar that is in contact with the cavity (violet region), and stressed in balance with loads T and Fl, respectively. 

Fig. 5. Quasi-static pulling-out process of a pillar with respect to w0. The expressions for the calculations refer to Table 1. Typical values of material and geometric 
parameters are used: ϕ = 0.2 μm, L = 1 μm, ε0 = − 0.00175 (i.e., σ0 = − 186 MPa); E = 69 GPa, ν = 0.35; μ = 80 MPa; γF = 1 N/m, γM = 3 N/m, γFM = 0.5359 N/m. 
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At z = − ξ < 0, the pulling-out process increases the free surface of 
both the pillar and the cavity and induces tension as (Fig. 4(c)) 

Fξ = − πϕΔγ0. (6) 

At z = − l, the pulling-out process increases the free surface of the 
cavity and induces tension as (Fig. 4(a)) 

Fl = − πϕ(γM − γFM). (7) 

The deformation induced by Fl is inherent and can be included in the 
reference configuration when considering the deformation induced by 
T. Fl causes an upward shear force at the interface, which will be 
overcome when the two violet regions (pink regions in Fig. 4(a)) are in 
contact. To facilitate the calculation of the pulling-out force (without 
regard to the change of local stress state of the pillar near its free sur-
face), one can virtually extend the embedded length from l to (Fig. 4(b) 
and (c)) 

le = l+ lcl, (8)  

where lcl is the maximum action length (along z–axis) caused by Fl 
(Fig. 4(a)) and can be derived as 

lcl =
γM − γFM

μ . (9) 

Generally, the pulling-out process of a long enough pillar (the 
pulling-out a short pillar can be degenerated from the pulling-out of a 
long pillar (refer to Fig. 5)) can be divided into six stages. At stage I, ξ =

0, the pulling-out force increases until F0 is reached. At this stage, the 
global elastic deformation can be ignored. At stage II , ξ = 0, as the 
pulling-out force increases, the elastic deformation region (lc in Fig. 4(a) 
and (b)) of the embedded part gradually extends downward, and the 
shear reaction force also increases. Once the interface is separated, the 
elastic deformation region reaches the maximum (lc = lc,max, Fig. 4(c)). 
At stage III (Fig. 4(c)), ξ > 0, lc keeps constant (lc ≡ lc,max), and the 
deformation at the range of Z > ξ will be uniform. At this stage, the 
pulling-out force is also a constant. As the pulling-out displacement in-
creases, the violet region in Fig. 4(c) moves downward as a whole, until 
it touches the bottom of the pillar and further overcomes Fl. At stage IV, 
as the pulling-out displacement increases, the whole pillar slides up-
ward, and ξ gradually decreases to 0. But the pulling-out force remains 
constant as before. At stage V, ξ = 0, as the pulling-out displacement 
increases, both the pulling-out force and the violet region gradually 
decrease. Finally, le decreases to lcl, and the pillar is completely sepa-
rated from the mold. 

The whole pulling-out process is further described in Table 1, where 
the derivation of the expressions is based on the stress states. w0 is the 
pulling-out displacement which can be calculated by w0 = w|Z=0 (Eq. 
(3)). Tcr represents the critical pulling-out force that can keep the 
interface open (without considering Fξ). By letting σx = − 2γF/ϕ and T =

Tcr at z = − ξ < 0, one can obtain Tcr as 

Tcr =
1 − ν

4ν
(
2F0 − πϕ2σ0

)
. (10) 

During the quasi-static pulling-out process (without considering 
gravity), T cannot be larger than Tcr, i.e., the maximum pull-out force is 
independent of the pillar length if it is long enough. Initially (i.e., l = L 
and 0 ≤ T ≤ T0), all stress components in the pillar should be zero 
except the stresses of 

σx = σy = σ0 =
Eε0

1 − ν,

where σ0 and ε0 are the radial mismatch stress and strain, respectively. 
The mismatch can be from the plastic forming induced residual defor-
mation or temperature change induced thermal mismatch. The 
mismatch strain is assumed uniform along the pillar. One can derive the 
normal stress in the pillar as (Fig. 4(b) and (c)) 

σx = σy =

⎧
⎪⎪⎨

⎪⎪⎩

−
2γF

ϕ
, z > − ξ,

σ0 +
ν

1 − νσz, − le ≤ z ≤ − ξ,
(11a)  

and 

σz =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4T
πϕ2, z > − ξ,

4μ
ϕ
(lc + z + ξ), − lc − ξ ≤ z ≤ − ξ,

0, − le ≤ z ≤ − lc − ξ,

(11b)  

where lc is given in Table 1. According to the Hooke’s law and the 
geometric equations, Eq. (11) yields the displacement along z–axis of the 
pillar as 

w =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ν
1 − ν

2μ
λϕ

l2
c +

2
Eϕ

(
2T
πϕ

+ 2νγF + νϕσ0

)

(z + ξ) + L − l − δ, z ≥ − ξ,

ν
1 − ν

2μ
λϕ

(z + ξ + lc)
2
+ L − l − δ, − lc − ξ ≤ z ≤ − ξ,

L − l − δ, − le ≤ z ≤ − lc − ξ,
(12)  

where λ = Eν/(1+ν)/(1 − 2ν) is the Lame constant, and 

δ =

⎧
⎪⎨

⎪⎩

ν
1 − ν

2μ
λϕ

(ξ + lc − l)2
, l < lc + ξ,

0, l ≥ lc + ξ.

Based on the expressions in Table 1, the pull-out process can be 
quantified as shown in Fig. 5. It is clear that the pulling-out displacement 
in the first three stages is very small and can be ignored. Thus, only the 
stages IV and V need to be considered in the following discussions, and 
we have 

Table 1 
Key parameters of the pulling-out process of an embedded pillar (Σ = ν(2γF +ϕσ0))  

Stage T lc ξ l w0 

I 0 to − F0 0 0 L 0 
II − F0 to Tcr − Fξ 

{
(T + F0)/(πμϕ),T < Tcr − F0

Tcr/(πμϕ),T ≥ Tcr − F0 

0 L ν
1 − ν

2μ
λϕ

l2c 

III Tcr − Fξ Tcr/(πμϕ) 0 to le − lc L ν
1 − ν

2μ
λϕ

l2c +
2ξ
Eϕ

(2μlc +Σ) −
ν

1 − ν
2μ
λϕ

•

{
0, ξ ≤ L − lc

(ξ + lc − L)2, ξ > L − lc 
IV Tcr − Fξ Tcr/(πμϕ) le − lc to 0 ξ + lc − lcl ν

1 − ν
2μ
λϕ

(
l2c − l2cl

)
+

1
Eϕ

(4μlc +2Σ+Eϕ)(L − lc +lcl) − ξ 

V Tcr − Fξ to − Fξ 
{

Tcr/(πμϕ),T ≥ Tcr − F0
(T + F0)/(πμϕ),T < Tcr − F0 

0 lc − lcl ν
1 − ν

2μ
λϕ

(
l2c − l2cl

)
+

1
Eϕ

(
4T
πϕ

+2Σ+Eϕ
)

(L − l)

VI − Fξ to 0 0 0 0 to − ∞ 2LΣ/(Eϕ) + L − l  
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International Journal of Solids and Structures 251 (2022) 111737

6

w0 ≈ L − l, (13)  

and 

T ≈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Tcr + πϕΔγ0, 0 ≤ w0 ≤ L −
Fl + Tcr

πμϕ
,

πϕ(μL + Δγ0 − μw0), L −
Fl + Tcr

πμϕ
< w0 ≤ L,

0,w0 > L.

(14a)  

where 0 ≤ w0 ≤ L − (Fl +Tcr)/(πμϕ) refers to the stage IV, where the 
pulling-out force is a constant (Tcr + πϕΔγ0); 
L − (Fl +Tcr)/(πμϕ) < w0 ≤ L refers to the stage V, where the pulling-out 
force decreases linearly. Based on Eq. (14a), the effect of ϕ on the pull- 
out process can be calculated (Fig. 6). If ϕ ≤ − 2γF/σ0 +

4ν/(1 − ν) • Δγ0/σ0, the pillar tends to separate from the cavity auto-
matically. In reality, this may not occur because the separation involves 
in local deformation of the film; if ϕ≫ − 2γF/σ0 + 4ν/(1 − ν) • Δγ0/σ0, T at 
stage IV tends to be a constant and is determined by σ0 (or ε0), and 
when ϕ→ − 2γF/σ0 +4ν/(1 − ν) • Δγ0/σ0 from the right side, T appr 
oaches to zero rapidly after a slight increase. If 
ϕ ≥ − 2γF/σ0 − 4ν/(1 − ν) • (μL+γM − γFM)/σ0, only stage V exists; and if 
ϕ ≤ − 2γF/σ0 − 4ν/(1 − ν) • (γM − γFM)/σ0, only stage IV exists. In addition, 
there is an approximate linear relationship between the pulling-out 
displacement and ϕ at stage V, and the radial mismatch stress (strain) 
has a slight effect when ϕ is a relatively large. 

In the above discussion, L is considered large enough. If L is small 
(pull-out short pillars), the pull-out process changes. Based on Fig. 5, one 
can directly move the four continuous curves of the stage IV-VI to the left 
by a distance ΔL to obtain the pull-out behavior of a pillar with length of 
L − ΔL. In this operation, each continuous curve of stages IV-VI has one 
intersection with the corresponding curve of stages I-III, which divides a 
continuous curve into two parts (if the intersection is at the end, the 
intersection itself is one part). By deleting the left part of a continuous 
curve of stages IV-VI and the right part of the corresponding curve of 
stages I-III, and then combining the rest two curves into one continuous 
curve, one obtains the pull-out behavior of a pillar with length of L − ΔL. 
Note that stage IV will completely disappear when L→(Fl +Tcr)/πμϕ 
(refer to Eq. (14a)). 

Fig. 6. Effect of ϕ on the pull-out process: (a) The pull-out stress at stage IV can be calculated by 4(Tcr +πϕΔγ0)/
(
πϕ2) (Eq. (14a)) , which is independent of L. (b) The 

proportion of the pulling-out displacement at stage V (with respect to the total pull-out length) equals to (Fl +Tcr)/(πμϕL) if 0 < (Fl +Tcr)/(πμϕ) < L, equals to 0 if 
(Fl +Tcr)/(πμϕ) ≤ 0, and equals to 100% if (Fl +Tcr)/(πμϕ) ≥ L). The material parameters refer to Fig. 5. 

Fig. 7. Deformation of a partially pulled-out pillar.  

Fig. 8. Reactions exerted on partially pulled-out pillars located at different distances (X) (Fig. 9). (a) Dependence of m, q, ζ on X. (b) Calculated reaction forces (i.e., 
− T, − d(qζ)/dX and dm/dX; refer to Eq. (27)). Typical values of dx = dy = 0.3 μm, h = 10 μm and ∊ = 4 nm were used in the calculations. Other material and 
geometric parameters refer to Fig. 5. ζ is assumed as ∊ + 7.716× 1022X4. 
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When considering the effect of stress exerted on the elastic film from 
the partially pulled-out pillars (Fig. 3 and Fig. 9), as a conservative es-
timate, one can consider T as a constant, i.e., 

T ≈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Tcr + πϕΔγ0,w0 ≤ L >
Fl + Tcr

πμϕ
,

πϕ(μL + Δγ0),w0 ≤ L ≤
Fl + Tcr

πμϕ
,

0,w0 > L.

(14b)  

3.1.2. Deformation of the partially pulled-out pillars 
For the partially pulled-out pillar as shown in left of Fig. 7, local 

deformation of the film (point A in Fig. 3), the axial deformation of the 
pillar, and effect of the lateral displacement (u0) on the vertical 
displacement at Z = 0 are ignored. The displacement u0 can be assumed 
far less than w0. Thus, the model in the left of Fig. 7 can be simplified to 
the one in the right of Fig. 7. The pillar at point A suffers forces from the 

film (moment m, horizontal force q, and vertical force T). Our finite 
element analysis indicates that the shear deformation cannot be ignored. 
The governing equation for deformation of the partially pulled-out pillar 
can be given as 

Eπϕ4

64
∂4u
∂Z4 − T

∂2u
∂Z2 = 0, Z ∈ [ − w0, 0], (15)  

with boundary conditions of 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u|Z=0 = u0,

∂u
∂Z

⃒
⃒
⃒
⃒

Z=0
= − θ + γ,

u|Z=− w0
= 0,

∂u
∂Z

⃒
⃒
⃒
⃒

Z=− w0

= γ,

where γ = χq is the shear induced rotation. u0 and w0 refer to Eq. (3). For 
a Timoshenko beam with circular cross-section, the constant χ is 
determined as 

χ =
7 + 6ν

3Eπϕ2/4 

The general solution of Eq. (15) is 

u = C1 +C2Z +C3cosh(kZ)+C4sinh(kZ), (16)  

where 

C1 =
ku0w0 − θ/k + θw0/(2K) − K(u0 + γw0 − θw0/2)

kw0 − 2K
,

C2 =
ku0 + K(θ − 2γ)

kw0 − 2K
,

C3 =
θ/k − θw0/(2K) − K(u0 − γw0 + θw0/2)

kw0 − 2K
,

C4 =
(γ − θ)w0 − u0 + θK/k

kw0 − 2K
,

K = tanh
kw0

2
, k =

8
ϕ2

̅̅̅̅̅̅
T

Eπ

√

.

On the other hand, according to the moment balance, 

Fig. 9. Sketch the deformation of a film under actions of a far-field tension (F) 
and homogenized interface forces (m, q and T) from partially pulled-out pillars 
(refer to Section 3.2.2). 

Fig. 10. Configuration of the completely peeled part (x ≥ P) in Fig. 9, where θP is set as 0.01. Left: the situations with a constant α = 2π/3 and different F/b. Right: 
the situations with a constant F/b = 100 and different α. The material and geometric parameters refer to Fig. 8. 
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Eπϕ4

64
∂

∂Z

(
∂u
∂Z

− γ
)

= − m − qZ − T(u0 − u), (17) 

which yields 

u = u0 +
m
T
+

q
T

Z +C3cosh(kZ)+C4sinh(kZ). (18) 

Based on Eqs. (16) and (18), one has 

m =
qw0 − Tu0

2
+

Tθ
2kK

, (19) 

and 

q =
(θK + ku0)T

2K(χT − 1) + kw0
. (20a) 

Positive directions of m and q follow the arrows in Fig. 7. It can be 
verified that the effect of q is always far more significant than that of m 
as shown in Fig. 8. Under the condition of small deflection, Eq. (20a) can 
be approximated as 

q ≈
h

2χζ
dζ
dX

. (20b) 

As indicated by Eqs. (19) and (20), the reaction forces and moment 
exerted on partially pulled out pillars can be fully described by u0, w0, θ 
and T. 

In addition, it is noteworthy that m and q will become infinite when 
w0→0, which is due to the failure of the beam model. In reality, the 
cavity is elastic and the edge of the cavity is filleted (with a radius of 
∊≪ϕ), therefore, the real fixed end is at Z = ∊. In other words, w0 in Eqs. 
(19) and (20) should be replaced by w0 +∊ when calculating m and q. 
Figure 8 shows the calculated m and q on a partially pulled-out pillar 
caused by the bending deformation of the film, where we considered a 
simple deflection as ζ∝X4. 

3.2. The apparent adhesion work of the micro-structured interface 

Generally, at the initial peeling stage, the peeling force approaches to 
zero, and then rapidly increases. As the peeling process progresses, the 
peeling force will gradually decrease to a stable value. At the stable 
peeling process, considering that L≪h, the deflection of the film in the 
partially peeled part (X ≤ P, X = P is solution of the equation w0(X) =

L, Fig. 9) is small. While the deflection of the film in the completely 
peeled part (X ≥ P) can be very large if assuming the initial length of 
such part is infinite. In this section, the deformation of these two parts 
will be discussed separately. 

3.2.1. Deformation of the completely peeled part (X ≥ P) of the film 
Considering that the deformation of the thin film is concentrated 

near X = P, the film can be assumed to have infinite length (Fig. 9). The 
deflection and rotation of the film at X = P are denoted as ζP ≈ L and θP, 
respectively. Bending of such film (with large deflection) should satisfy 

d2θ
ds2 =

F
Db

sin(θ − α) (21) 

where D = Eh3/[12(1 − ν2) ] is the bending stiffness. The boundary 
conditions are 
{

θ|s=P = θP,

θ|s=+∞ = α.

The solution of Eq. (21) reads 

s = P −

̅̅̅̅̅̅
Db
F

√

ln
(

tan
α − θ

4
cot

α − θP

4

)

, (22a) 

or parametrically as 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = P + (s − P)cosα − 2
̅̅̅̅̅̅
Db
F

√ (

cos
α + θ

2
− cos

α + θP

2

)

,

y = ζP + (s − P)sinα − 2
̅̅̅̅̅̅
Db
F

√ (

sin
α + θ

2
− sin

α + θP

2

)

.

(22b) 

Based on Eq. (22), the deformation of the completely peeled part 
(X ≥ P) of the film can be predicted precisely (Fig. 10), and the moment 
at x ≈ X = P (i.e., s = P) can be calculated as 

MP = Db
dθ
ds

⃒
⃒
⃒
⃒

θ=θP

= 2
̅̅̅̅̅̅̅̅̅
DbF

√
sin

α − θP

2
. (23) 

Combing Eq. (23) with Eq. (2b) and given α≫θP, it is found that 

Δγ =
M2

P

2Db2. (24) 

The sectional shear force at x ≈ X = P is 

QP = Fsin(θP − α),

and one can derive a relation as 

tan
α − θP

2
= −

M2
P

2DbQP
. (25) 

It will be shown that Eqs. (24) and (25) are useful for the analysis of 
the adhesion work (referring to Section 3.2.2). 

3.2.2. Deformation of the partially peeled part (X ≤ P) of the film 
The deflection of the partially peeled part is small compared to the 

size of the film (Fig. 9), but it may not be ignored by comparison with the 
size of the pillars. Thus, Eq. (3) can be approximated as 
⎧
⎨

⎩

u0 ≈
1
2

hθ,

w0 ≈ ζ,
(26) 

where the high order terms of θ are ignored, and 

θ ≈
dζ
dX

.

Then the bending curvature can be expressed as 

Fig. 11. Forces on an infinitesimal section element of the film with sizes dx ×

b× h. Considering θ→0, the force balance along Z–axis yields dxdQ/dX =

− bT/dy, and the moment balance yields dxdM/dX = Qdx + b(m+qh/2)/dy, 
where Q and M are the sectional shear force and moment, respectively. Note 
that the effect of the sectional tension in the film can be ignored considering 
that in our experiments, the film thickness is usually 2-3 orders of magnitude 
larger than the diameter or the length of the pillars, and the peeling angle is 
usually around π/2. 
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κ =
dθ
ds

≈
dθ
dX

≈
d2ζ
dX2.

Considering that dx≪h, the discrete loads exerted on the film by the 
pillars can be approximately considered continuous along x-axis. Then 
the force and moment balance of the infinitesimal section element in 
Fig. 11 gives 

dx
dQ
dX

+
bT
dy

= 0, dx
dM
dX

= Qdx +

(

m+
qh
2

)
b
dy
,

where Q is the sectional shear force, M is the sectional moment. By 
substituting 

M = Dbκ 

into the above equation, one obtains 

dxdyD
d4ζ
dX4 −

d
dX

(

m+
qh
2

)

+T = 0,X ∈ [0,P]. (27) 

Note that the interface adhesion (in XOY plane) can induces complex 
deformation near X = 0. For simplification, the contribution from the 
interface adhesion (in XOY plane) is equivalently added to T, i.e., T is 
updated by T + dxdyρFΔγ0/L, where ρF = 1 − ρM and 

ρM =
πϕ2/4
dxdy 

is the area fraction of the mold cavities. Considering that the 
deflection of the partially peeled part (X ≤ P) is always very small, the 
effect of m can be ignored (Section 3.1.2), Eq. (27) can then be simplified 
as (by using Eq. (20b)) 

dxdyD
d4ζ
dX4 −

h2

4χ
d

dX
dζ

ζdX
+T + dxdy

ρFΔγ0

L
= 0,X ∈ [0,P]. (28) 

The sectional shear force Q and the total moment Ξ corresponding to 
Eq. (28) read 

Q =
dΞ
dX

,Ξ = Db
d2ζ
dX2 −

bh2

4dxdyχ ln
ζ
∊
;

and the boundary conditions of Eq. (28) are 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ|X=0 = ∊,

dζ
dX

⃒
⃒
⃒
⃒

X=0
= 0,

Ξ|X=0 = 0,

ζ|X=P = L + ∊,

Ξ|X=P = MP,

Q|X=P = QP.

By introducing dimensionless parameters of (Eq. (14b) is adopted) 

ζ̂ =
(7 + 6ν)(t + t0)

9ρMh(1 − ν2)
ζ, X̂ =

̅̅̅̅̅̅̅̅̅̅̅
t + t0

√

h
X; P̂ =

̅̅̅̅̅̅̅̅̅̅̅
t + t0

√

h
P;

t =
16(7 + 6ν)

3Eπϕ2 T

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

16(7 + 6ν)
3Eϕ

(

Δγ0 −
1 − ν

2ν γF

)

−
4(7 + 6ν)ε0

3ν , L >
Fl + Tcr

πμϕ
,

16(7 + 6ν)
3Eϕ

(Δγ0 + μL), L ≤
Fl + Tcr

πμϕ
;

t0 =
ρF

ρM

4(7 + 6ν)
3EL

Δγ0;

Eq. (28) becomes 

d4 ζ̂

dX̂
4 −

d
dX̂

dζ̂
ζ̂dX̂

+ 1 = 0, X̂ ∈ [0, P̂]. (29a) 

Correspondingly, the dimensionless sectional shear force and the 
total moment can be derived as 

Q̂ =
d3 ζ̂

dX̂
3 −

dζ̂
ζ̂dX̂

, Ξ̂ =
d2 ζ̂

dX̂
2 − ln

ζ̂
∊̂
; ∊̂ =

(7 + 6ν)(t + t0)

9ρM(1 − ν2)

∊
h
.

Further, Eq. (29a) can be rewritten as 

Q̂ = Q̂0 − X̂ , X̂ ∈ [0, P̂], (29b) 

or 

Ξ̂ = Ξ̂0 + Q̂0 X̂ −
1
2

X̂
2
, X̂ ∈ [0, P̂], (29c) 

where Q̂0 = Q̂|
X̂=0

, Ξ̂0 = Ξ̂|
X̂=0

. Finally, one can express the 
dimensionless boundary conditions as (under the condition of α≫θP) 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̂|
X̂=0

= ∊̂,

dζ̂
dX̂

⃒
⃒
⃒
⃒

X̂=0
= 0,

d2 ζ̂

dX̂
2

⃒
⃒
⃒
⃒

X̂=0
= 0,

ζ̂|
X̂=P̂

= L̂ =
(7 + 6ν)(t + t0)

9ρM
(
1 − ν2)

L + ∊
h

,

M̂P = Ξ̂|
X̂=P̂

=
4(7 + 6ν)
3EρMbh2 MP,

Q̂P = Q̂|
X̂=P̂

=
4(7 + 6ν)

3EρMbh
̅̅̅̅̅̅̅̅̅̅̅
t + t0

√ QP.

Though Ξ̂ and Q̂ can be easily solved analytically based on Eqs. (29b) 
and (29c), the deflection ζ̂ is difficult to be solved analytically. The 
shooting method was adopted to solve ζ̂. Because of the singularity 
when ζ̂→0, the numerical solution are usually difficult to converge 
unless all the boundary conditions are set with proper values at the 
location of ζ̂→0 (i.e., X̂ = 0). Specifically, we first set the boundary 

conditions at X̂ = 0, i.e. ζ̂|
X̂=0

= ∊̂, dζ̂/dX̂|
X̂=0

= d2 ζ̂/dX̂
2⃒
⃒
X̂=0

= 0, and 

try different Q̂0 values. Then the solutions are used to match a group of 
L̂, M̂P, and Q̂P. By establishing the mapping relations among Q̂0, L̂, M̂P, 
and Q̂P, one can finally obtain the solutions of Eq. (29). 

Considering a group of typical parameters as ∊ = 20 nm (it is 
measured as ~17 nm in our experiment, Fig. 12), h = 0.15 mm, ρM =

0.35, L̂ = 0.0004, ν = 1/3, t+ t0 ∼ 0.036, and Q̂0 = 0.05625, the 
solution of Eq. (29) is obtained and displayed in Fig. 13(a). It is found 

Fig. 12. The fillet radius (∊) at the edge of a mold cavity used in our experi-
ments (measured based on the SEM image in OXZ plane). Several samples were 
measured to generate an average value of ∊. 

L. Shui et al.                                                                                                                                                                                                                                     



International Journal of Solids and Structures 251 (2022) 111737

10

that most of the partially peeled part of the film has little deflection due 
to the interfacial shear constraint (in OXY plane), which is quite 
different from the common behavior of cantilever beam. The predictions 
indicate that the interfacial shear will result in the real crack tip (at 
X̂ ∼ 0) far from the visual location (i.e., X̂ ∼ 0.03 ∼ 0.6P̂ in Fig. 13 
(a)), in other words, a large part of the interfacial crack seems to be 
“hidden”. The location of the hidden length of the interfacial crack can 
be determined as X̂hidden at ζ̂ = 2∊̂ (note that the deflection ζ̂ ≥ ∊̂), that 
is, X̂hidden is determined by ∊̂, which is shown in Fig. 13(b), where ∊̃ =

∊̂/∊̂ref , ∊̂ref = 1.543× 10− 5. The results show that smaller fillet can 
effectively reduce the hidden length of the interfacial crack, this is 
because the smaller the fillet, the stronger the shear constraint in OXY 
plane (when ∊̃→0, q|

X̂∼ 0
→∞, Eq. (20)), so the influence depth (along 

− x–axis) of the peeling force decreases. 

3.2.3. The apparent adhesion work and interfacial shear stress (in OXY 
plane) 

By using the dimensionless parameters, Eqs. (24) and (25) become 

Δγ =
27(1 − ν2)

8(7 + 6ν)2 Ehρ2
M Δ̂γ, (30) 

and 

tan
α
2
= −

9ρM(1 − ν2)M̂
2
P

2(7 + 6ν)
̅̅̅̅̅̅̅̅̅̅̅
t + t0

√
Q̂P

, (31) 

where 

Δ̂γ = M̂
2
P (32) 

is the dimensionless apparent adhesion work. 
Given the parameters in Fig. 13(a), and considering 

Q̂0 ∈ [0.0561,0.0564], one can solve Eq. (29) and calculate Δ̂γ based on 
Eqs. (30) and (31), as demonstrated in Fig. 14. It is found that Δ̂γ is 
related to the peeling angle α. However, when α is far from 0 or 2π, Δ̂γ 
can be approximated as a constant 

Δ̂γ ≈ Δ̂γ|α=π , 0≪α≪2π. (33) 

In fact, when α = π, Q̂P = 0, i.e., the section at X̂ = P̂ only bears a 
bending moment. Eq. (33) can significantly simplify the numerical 
solving process. In addition, it is noted that Δ̂γ is only determined by ∊̂ 
and L̂, the relation between Δ̂γ and L̂ can thus be readily obtained 
(Fig. 15(a)). It is observed that when L̂≫∊̂, Δ̂γ is approximately pro-
portional to L̂   

By substituting Eq. (34) into Eq. (30), the apparent adhesion work Δγ 
can be calculated. Eq. (34) indicates that Δ̂γ will remain unchanged if 
one keeps (7+6ν)/

(
1 − ν2) • (t+t0)/(hρM) as a constant. The effects of 

ρM, h, L, and ϕ on Δγ can be roughly summarized as 

Δγ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρMhL
ϕ

,L >
Fl + Tcr

πμϕ
,

ρMhL2

ϕ
, L ≤

Fl + Tcr

πμϕ
.

(35) 

On the other hand, based on the numerical solutions, one can eval-
uate the interfacial strength (in OXY plane). The analysis in Section 
3.1.2 (Fig. 8(a)) reveals that the shear failure of a pillar at its root (point 
A in Fig. 3) would be the major failure mode during peeling. According 

Fig. 13. (a) A deflection curve of the film based on numerical solution of Eq. (29) (∊̃=1 is used in the calculation). (b) Effects of ∊̃ on the hidden length of the 
interfacial crack (X̂hidden). 

Δ̂γ ≈
(
0.159∊̃3

+ 2.070∊̃+ 0.968
)
× 10− 3 L̂ −

0.369∊̃3
− 2.085∊̃2

− 1.884∊̃ + 1.743
∊̃ + 0.310

× 10− 6 (34)   

Fig. 14. Theoretically predicted relationship between the dimensionless 
apparent adhesion work Δ̂γ (Eq. (30)) and the peeling angle α (Eq. (31)). 
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to the expression of q (Eq. (20b)), one can introduce a dimensionless 
shear stress as ̂τ = dζ̂/(ζ̂dX̂). When L̂≫∊̂, the numerical solutions yields 
a fitted relation among τ̂, ∊̂ and L̂ as 

τ̂max = max
0≤X≤P

{τ̂} ≈
145̅̅̅

∊̃
√ ≈

1
̅̅̅̅̅̅̅̅̅̅̅̅
3.07∊̂

√ , (36) 

which indicates that the shear stress only depends on ∊̂ when L̂≫∊̂ 
(Fig. 15(b)). 

Based on Eqs. (34)-(36), a map of Δ̂γ and ̂τmax (with respect to ∊̂ and 
L̂) can be obtained (Fig. 16). For a given shear strength, the permitted 
parameter space is limited above the corresponding contour line. For 
example, for a given shear strength of 4qmax/

(
πϕ2) = 2τ̂max

̅̅̅̅̅̅̅̅̅̅̅̅
t + t0

√
/

(
πϕ2χ

)
= 100 MPa and ν = 1/3, t + t0 = 10− 8, and E = 70 GPa, one 

have τ̂max = 85.71, which yields ∊̂ = 4.434 × 10− 5 or ∊̃ = 2.874. 
Meanwhile, to ensure safe peeling, the parameters should be taken from 
the region above the line of ∊̂ = 4.434 × 10− 5 (the dashed line in 
Fig. 16). Fig. 16 tells the larger ∊̂ the weaker the interfacial shear stress 
and the less the structural failure. On the other hand, a smaller ∊̂ is more 
conducive to peeling/demoulding, which seems contradictory because 
q|

X̂∼ 0
→∞ when ̃∊→0 (Eq. (20)). In fact, such behavior can be predicted 

by Fig. 13(b), which shows that a smaller ̃∊ leads to a smaller X̂hidden, and 
thus a smaller peeling force (with constant tension t+t0 and the same ̂L). 

3.2.4. Near-field peeling behavior 
The above peeling model can be called a standard peeling model 

since an infinite long (along X–axis) film is considered. The peel-off 
approaches to a constant that is related to the apparent adhesion 
work. In practice, the length of the film will be finite. In this section, the 
peeling force is initially applied near X = P is considered, which we call 
near-field peeling.  

Fig. 16. Map of Δ̂γ (the rainbow contour nephogram) and τ̂max (the white contour lines) with respect to ∊̂ and L̂ (L̂≫∊̂).  

Fig. 15. Theoretically predicted dimensionless apparent adhesion work Δ̂γ (a) 
and the maximum interfacial shear stress τ̂max (b) versus the pillar length, 
where ∊̃ = ∊̂/∊̂ref . The data points are obtained by numerical solutions, the 
dotted lines are drawn based on Eqs. (34) and (36). 
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Taking the common peeling angle of α = π/2 for example (Fig. 1(e)). 
The sectional shear force and moment at X = P are QP = − F and MP =

FΔP, respectively, where ΔP is the distance between the point at X = P 
and the loading point (Fig. 1(e)). Such a near-field peeling can be 
associated with the standard peeling model (considering αst≫θP) 
⎧
⎨

⎩

MP = FΔP = 2
̅̅̅̅̅̅̅̅̅̅̅̅
DbFst

√
sin

αst

2
,

QP = − F = − Fstsinαst.

(37) 

where Fst and αst are the equivalent peeling force and the peeling 
angle, respectively. Then we have 

Fst =
F2ΔP2

4Db
+

Db
ΔP2, (38a)  

sinαst =
F
Fst

, (38b) 

and 

tan
αst

2
=

FΔP2

2Db
. (38c) 

Eq. (38a) indicates that Fst ≥ F > 0, and Eqs. (38b) and (38c) guar-
antee that αst has only a unique solution in the range of (0,2π). As a 
result, for a given F and ΔP in the near-field peeling, there is a unique 
corresponding real solution of Fst and αst ∈ (0, π)⊂(0,2π). In other words, 
any near-field peeling problem can be transformed into a specific stan-
dard peeling problem. Thus, according to Eq. (24), we have 

F
b
=

h
ΔP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

EhΔγ
6(1 − ν2)

√

=
3ρMEh2

4(7 + 6ν)ΔP

̅̅̅̅̅̅̅

Δ̂γ
√

. (39) 

Eq. (39) tells that the peeling force at the near-field peeling may 
become extremely large when ΔP→0, and it will get worse if the film has 
a large bending stiffness. Based on Eqs. (2) and (39), a comparison of the 
peeling force between the far-field and the near-field peeling is shown in 
Fig. 17(a), where we set E = 70 GPa, h = 1 μm, ν = 1/3, Δγ = 50 N/m, 
and α = π/2. As ΔP/h increases, the required peeling force in the near- 
filed peeling drastically decreases and finally tends to the far-field 
peeling force. 

Experimentally, the predicted scaling law of F∝1/ΔP (Eq. (39)) could 
be investigated based on the set-up in Fig. 1(e). Typical results for the 
peeling of a Pt-BMG strip which was formed into a Ni-BMG mold with 
surface nanocavities is shown in Fig. 17(b). It is interesting that the 
peeling process during mechanical demoulding can be regarded as the 

repetition of the following two processes: gradually debonding to stop at 
a certain peeled distance of ΔPcr (such as Points A-D in Fig. 17(b)), at 
which the system is always in force balance though the peeling force 
increases, until the peeling force increases to a critic value, Fcr, the 
interface starts to debond again. The series of discrete data points (ΔPcr,

Fcr) reveal the dependence of the steady-state peeling force on the 
peeling distance, which agrees well with the theoretical prediction (Eq. 
(38)). 

4. Closing remarks 

Through theoretical analysis and experiments, the peeling mechanics 
of film-substrate system with mutually embedded nanostructures in the 
interface are comprehensively and systematically studied in this work. 
By integrating the obtained micromechanical behavior in the micro-
structured interface into the traditional theory of Euler-Bernoulli beam, 
we derive a concise governing equation for the mechanical demoulding 

as d4 ζ̂/dX̂
4
− d/dX̂ • dζ̂/(ζ̂dX̂)+1 = 0 (ζ̂ and X̂ are the dimensionless 

deflection and the spatial coordinate, respectively), where the factor 1/ζ̂ 
leads to a mathematical singularity and reveals a strong in-plane shear 
effect. Considering that the edge of mold cavities is always filleted in real 
situation (with a dimensionless radius of ∊̂), the difficulties in solving 
the governing equation are greatly reduced, based on which simple 
expressions for predicting the apparent adhesion work and the 
maximum interface shear stress are obtained. The expressions establish 
the quantitative basis for evaluating and guiding the mechanical 
demoulding process, and predicting the required peeling force. The re-
sults presented in this work provide beneficial insights into the physical 
process and mechanism of interfacial peeling of complex film-substrate 
systems. Considering that surface/interface structures and thin film- 
substrates widely exist in nature and man-made systems, these find-
ings could not only deepen the understanding of the peeling mechanics 
of complex interfaces, but also promote the wide application of nano-
structures fabricated by nanomolding. 
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Fig. 17. (a) Comparison of the peeling force under near-field and far-field (i.e., standard) peeling (The peeling angle is α = π/2). (b) Typical results for the peeling of 
a structured interface, where the peeling force was recorded by the software of the SEM tester 100 and the cracking distance ΔP was monitored with an optical 
microscopy. The insets show one frame of the peeling-off process, and the image of Pt nanopillars after mechanical demoulding. The nanopillar height was measured 
as L ∼ 153 nm. The apparent adhesion work Δγ is fitted as 3.7 N/m by Eq. (39) (E=94.8 GPa, ν=0.42 (Wang, 2012); h and b refer to Fig. 1(d)). 
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