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H I G H L I G H T S

• A Bayesian approach is used to construct machine-learning models for fuel cells.

• A sensitivity analysis is performed on electrochemical performance of fuel cells.

• Impacts of parameters on cell performance are assessed using Sobol’ indices.

• The kinetic parameters of electrochemical reactions show critical influence.
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A B S T R A C T

Uncertainties that commonly exist in mathematical models prevent accurate predictions of solid oxide fuel cell
performances and consequently impede the development and application of solid oxide fuel cell technologies.
Assessing the impact of uncertain input parameters on cell performance variability is of utmost importance to the
improvement of fuel cell models. To this end, a global sensitivity analysis is performed on the electrochemical
model of a fuel cell using the Bayesian sparse polynomial chaos expansion approach. With this approach, ma-
chine-learning models are constructed to approximate the input-output relationship of the electrochemical
model. The first-order, second-order, and total Sobol’ indices are then computed analytically to quantify the
individual impact of each parameter, the pairwise interaction between them and the total coupling effects over
the entire input parameter space. These sensitivity indices show that the kinetic parameters of the electro-
chemical reaction, such as the activation energy, pre-exponential coefficients, and the electronic transfer coef-
ficient, are the most sensitive parameters that significantly contribute to the variation of cell output voltage,
which indicates the requirement for in-depth investigations of these parameters to enhance the accuracy in fuel
cell model predictions. This work uncovers the possibility to apply data science techniques to the field of fuel
cells. The results of this study not only demonstrate the effectiveness of the Bayesian approach for performing
sensitivity analysis on the electrochemical model of a fuel cell, but also shed light on the rational design and
optimization of solid oxide fuel cells.

1. Introduction

Solid oxide fuel cell (SOFC), an electrochemical energy conversion
device working under high temperature conditions, has been regarded
as an environmentally benign energy source that possesses potential
benefits consisting of high reaction kinetics, high efficiency, and fuel
flexibility [1]. In recent decades, remarkable progress has been made in
theoretical, numerical, and experimental studies of optimization,

fabrication, and application of SOFC technologies. However, the wide
commercialization of SOFCs still faces critical challenges regarding
their reliability, efficiency, life expectancy, and so on.

Mathematical modelling is extensively employed as a low cost and
efficient alternative to experimental studies [2]. To date, various nu-
merical simulations have been performed with focus on different as-
pects of SOFC technologies, for instance, understanding the electro-
chemical reaction mechanism [3] and the failure mechanism [4],
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analysing the potential impact of relevant factors [5], selecting proper
materials [6], optimizing microstructures of electrodes [7], predicting
temperature distribution [8] and thermal stresses [9], studying mass
and heat transport [10], investigating gas flow configurations [11],
designing complex geometries [12], and predicting the crack propa-
gation [13] and degradations [14]. However, the predictive accuracy of
these numerical simulations remains uncertain due to the existence of
uncertainties in mathematical models. Typically, the uncertainties in
SOFC models arise from the variations of parameters inherent to ma-
terials (e.g., electric conductivities, porosities, etc.), manufacturing
tolerances, measurement errors, lack of knowledge about parameters
(e.g., electronic transfer coefficient, pre-exponential coefficients, etc.),
changes of operating conditions (e.g., temperature, pressure, etc.),
among others [15]. Thus, evaluating the quality of input parameters
and assessing the impact of uncertainty factors on the model outputs
are prerequisites for the improvement of the predictive accuracy in
SOFC models. For this purpose, global sensitivity analysis (GSA) is an
effective tool that has been widely used in various scientific domains.
Saltelli et al. [16] defined GSA as ‘the study of how uncertainty in the
output of a model can be apportioned to different sources of uncertainty in
the model input’. The potential uses of GSA include, but are not limited
to, the identification of key parameters that are responsible for output
variability, simplification of models by fixing inconsequential para-
meters, detection of critical regions in input parameter space, prior-
itization of additional research to enhance the understanding of the
model, and evaluation of the coupling effect between different input
parameters [15].

In recent years, sensitivity analysis has been applied to various
SOFC models for different purposes. Early studies on sensitivity analysis
of SOFC models are mainly based on the one-factor-at-a-time method,
where the impact of an input parameter on the model response is as-
sessed by varying it alone while keeping other inputs fixed at their
baseline values. Using this method, Chan et al. [17] conducted sensi-
tivity analysis on a polarization model of SOFC to study the effect of cell
component thickness on the drop in cell voltage. Campanari et al. [18]
discussed how the SOFC overpotentials are affected by the different
selections of key model parameters involved in the calculation. Nagel
et al. [19] investigated the impact of different parameters (such as
activation energy, diffusion coefficient, etc.) on the current density and
local temperature distributions based on a finite-volume SOFC model.
Nam [20] presented a sensitivity map that described the individual
effect of each microstructural parameter on current generation in
SOFCs. The problem with the one-factor-at-a-time approach is that it
does not assess the possible interaction effect of input parameters. To
capture the interaction effect, some studies considered combinations of
multiple varying input parameters. Gazzarri et al. [21] varied a com-
bination of 21 input parameters in 30 runs of model simulations to
study the sensitivity of degradations in SOFCs. Göll et al. [22] con-
ducted sensitivity analysis on the efficiency of a SOFC system by
varying 4 parameters simultaneously using a factorial design. Dhingra
and Peppley [23] carried out a paired-variable study to evaluate the
interactive impact on the SOFC system performance. With the increase
of computing power, a large number of numerical simulations become
computationally tractable, hence, Monte Carlo-based methods are used
in sensitivity analysis to assess the impact of parameters from a statis-
tical point of view. For instance, Cornu and Wuillemin [24] performed
sensitivity analysis on a set of 1500 data extracted from Monte-Carlo
simulations to assess the impact of random geometric distortions on the
performance and reliability of SOFCs. He et al. [25] investigated the
individual and simultaneous effects of 7 varying parameters on SOFC
stack performance based on Monte Carlo simulations with large sample
sizes on the order of 103. Further, they quantified the effects of these
parameters by variation and correlation coefficients. Some other studies
have also been devoted to the quantitative assessment of parameter
sensitivities in SOFC models. For instance, Kapadia and Anderson [26]

computed sensitivity derivatives of cell voltage with respect to the
material properties using the discrete adjoint method. Pan et al. [27]
calculated several different sensitivity indicators to rank the contribu-
tion of input parameters in SOFC models and further developed reduced
order models for SOFC stacks. Although massive applications of GSA
have been conducted in different fields, its application towards SOFCs
remains limited and primitive [28]. Therefore, further studies on GSA
of SOFCs are important for a comprehensive understanding of the im-
pact of uncertain parameters in SOFC models.

To perform GSA in various scientific domains efficiently, various
approaches have been proposed. The most widely used GSA techniques
are variance-based methods, screening methods, and spectral methods
[29]. Among others, variance-based methods have attracted much at-
tention as they are model-free and well applicable to complex physical
models, which can be nonlinear, non-smooth, or high-dimensional [16].
Variance-based methods compute Sobol’ indices as sensitivity metrics
to quantify the impact of model parameters and their interactions over
the entire parameter space. To compute Sobol’ indices, two approaches
are commonly used, namely Monte Carlo-based methods [30] and
metamodelling-based methods [31]. The latter usually requires much
lower computational effort than the former [32], making it preferable
especially for high-dimensional and computationally expensive models.
One of the most popular metamodelling-based methods is the sparse
polynomial chaos expansion (SPCE) method, which constructs a sur-
rogate model upon multivariate orthogonal polynomials to approx-
imate the input-output relationship of the original physical model [33].
The Sobol’ indices are then computed analytically from the SPCE
coefficients with negligible computational effort by applying the Par-
seval-Plancherel theorem. Thus, the key issue becomes how to construct
a good SPCE model efficiently. Several methods have been developed to
build up SPCE models, for instance, the stepwise regression technique
[33], the least angle regression algorithm [34], and the projection
method with dimension reduction techniques [35]. Recently, a robust
and efficient approach based on Bayesian model averaging was pro-
posed to construct SPCE models, namely the Bayesian sparse poly-
nomial chaos expansion (BSPCE) [36]. Specifically, Kashyap informa-
tion criterion is used within this approach to filter out unimportant
polynomial terms, resulting in a simple and sparse polynomial chaos
expansion that avoids overfitting and alleviates the curse of di-
mensionality. This strategy has been validated on several synthetic
mathematical examples [36] and proved effective on some numerical
problems [37].

Based on the BSPCE approach, the present study aims to quantita-
tively assess the impact of each uncertain parameter and its interactions
with other parameters on SOFC performance by conducting GSA on a
verified SOFC electrochemical model. Through this study, we identify
key parameters that have major contributions on the variability of
SOFC performance, evaluate the applicability of the electrochemical
model, understand the behaviour of the SOFC model with respect to its
parameters, discover the interactive effects between parameters, and
explore the possibility of applying data science techniques to the field of
SOFC technology. The results of this study are expected to provide a
useful guideline for the experimental measurement, modelling, design,
and optimization, as well as to the application of SOFC technologies.

This paper is organized as follows. In Section 2, the mathematical
model of electrochemistry in a SOFC unit is introduced, where the
formulations of Ohmic, concentration, and activation overpotentials are
presented. Section 3 briefly reviews the BSPCE approach and Sobol’
indices that are used to perform GSA. Section 4 is devoted to the vali-
dation of the SOFC electrochemical model and the construction of
BSPCE models. Section 5 presents the results of GSA on the SOFC
model, where the impact of input parameters on SOFC overpotentials
and the output voltage is discussed in detail. Finally, as a conclusion,
our findings regarding the sensitivity of the model-predicted SOFC
performance are summarized in Section 6.
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2. SOFC mathematical model

Electrochemical reactions between chemical species and electrodes
are the basis of energy conversion within a SOFC unit. Electrochemical
reactions can only take place at the interface between an electrode and
an electrolyte with the existence of chemical species. Assuming a SOFC
unit supplied with hydrogen and air, the reactions that take place at the
cathode/electrolyte and anode/electrolyte interfaces are

+
+ +

Cathode: O 2e O
Anode: H O H O 2e

1
2 2

2

2
2

2 (1)

The Nernst equation is commonly used to describe the ideal electro-
motive force for the above electrochemical reactions [38], also called
the open-circuit potential (OCP):
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where pH O,f2 and pH ,f2 are the partial pressures of water vapour and
hydrogen, respectively, at the fuel inlet, and pO ,a2 is the partial pressure
of oxygen at the air inlet. The subscripts f and a denote the fuel and air
inlets, respectively. = 8.314R J mol−1 K−1 is the universal gas con-
stant. =F 96, 485 C mol−1 is the Faraday constant. T is the operating
temperature of the SOFC. U T( )H

0
2 represents the cell potential at a

standard operating condition when the pressure is 1 atm. The value of
U T( )H

0
2 depends on the operating temperature and the Gibb’s free en-

ergy [39]:
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where U( )H
0

ref2 and S( )ref are the standard cell potential and the change
of entropy at a reference temperature Tref , given by:
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and H( )ref is the change of enthalpy during reactions at the reference
temperature. Relevant thermodynamic data in the abovementioned
equations are listed in Table 1.

Typically, due to the Ohmic ( ohm), concentration ( conc), and acti-
vation ( act) overpotentials generated when a SOFC is in service, the
output voltage of a cell unit is lower than the ideal open-circuit po-
tential (UOCP), which is given by:

= + + + +U U ( )OCP
ohm conc,anode conc,cathode act,anode act,cathode

(6)

where conc,anode, conc,cathode, act,anode, and act,cathode represent the anodic
and cathodic concentration and activation overpotentials. The mathe-
matical models of these overpotentials are detailed in the following
subsections.

2.1. Ohmic overpotential

Ohmic overpotential is caused by the resistance to charge transport
in SOFCs. Two major types of charged species are involved in SOFC

electrochemical reactions: electrons and ions. During electrons trans-
port through the anode and cathode, and ions through the electrolyte, a
voltage loss is expended to accomplish this charge transport process.
This voltage loss obeys Ohm’s law, and thus it is called the Ohmic
overpotential. It is linearly proportional to current density, j, with the
expression written as follows [38]:

= jRohm ohm (7)

where Rohm is the area-normalized resistance, namely the area-specific
resistance, which is generally measured from experiment. Considering
each layer of a SOFC unit individually, and assuming that the overall
area-specific resistance Rohm is a function of thickness and con-
ductivities of cell electrodes and electrolyte, we obtain [38]:

= + +Rohm
an

an

el

el

cat

cat (8)

where ,an el, and cat represents the thickness of the anode, electro-
lyte, and cathode, respectively. The parameters an and cat are the
electronic conductivities of anode and cathode, respectively, while el
stands for the ionic conductivity of the electrolyte. Electronic/ionic
conductivity quantifies the ability of a material to accommodate elec-
tron/ion charge transport under an electric field. Due to the funda-
mental difference in the transport of electrons and ions, the ion charge
transport in a solid electrolyte tends to be far more difficult than
electron charge transport in metals. Thus, the ionic conductivity of an
electrolyte is typically several orders of magnitude lower than the
electronic conductivity of electrodes for SOFCs. Electrical conductivity
is strongly dependent on temperature. Generally, the electrical con-
ductivity decreases with increasing temperature in metals, whereas
increases with increasing temperature in semiconductors. In this work,
considering the commonly used materials for SOFCs, such as Ni/YSZ as
the anode, LSM/YSZ as the cathode and YSZ as the electrolyte, the
electronic conductivity of the anode is approximated to be linearly
proportional to temperature [40]:

= A B T(1 )an an an (9)

with the coefficients Aan and Ban fitted from experimental data.
Meanwhile, the empirical formula of the Arrhenius type is adopted to
approximate the electronic conductivity in the cathode and ionic con-
ductivity in the electrolyte [6]:

= A
T

B
T

expk
k k

R (10)

where Ak and Bk are the pre-exponential factor and activation energy
for ionic/electronic conduction, respectively, which can be obtained
from experiment.

2.2. Concentration overpotential

Electrochemical reactions can only take place at three-phase
boundaries (TPB) in SOFCs, which are typically at the interfaces be-
tween electrodes and electrolyte. During reactions, the fuel and oxygen
are consumed at TPB, resulting in a species concentration gradient
through the SOFC’s porous electrodes. To maintain effective reactions,
mass transport through the electrodes is essentially important. When
mass transport effects hinder the reactions, a concentration over-
potential appears. Caused by the resistance to mass transport through
porous electrodes, the concentration overpotential for a SOFC using H2

as fuel can be expressed as follows:
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where pi is the partial pressure of species i. The first and second terms
on the right-hand side of Eq. (11) represent the anodic and cathodic
concentration overpotentials conc,anode and conc,cathode, respectively.

To calculate the partial pressures of H2, H2O, and O2 at TPB,

Table 1
Thermodynamic data for chemical species within the SOFC at temperature of
1023 K [39].

Species H( )ref (J mol−1) S( )i ref (J mol−1 K−1)

H2 0 166.8831
O2 0 244.3544
H2O 247956 233.7132
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different models for mass transport in porous electrodes have been
developed [41]. In this work, we assume that on the anode side, the
transport of gaseous H2 and H2O follow the pattern of equimolar
counter-current one-dimensional diffusion. While on the cathode side,
the flux of N2 is zero, and the transport of O2 is assumed to be one-
dimensional self-diffusion [17]. Based on these assumptions, the rela-
tions between the partial pressures of species and the current density
are given by [17]:

=p p T
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where p0 is the operating pressure in the SOFC, and a standard pressure
=p 10 atm is assumed in this work. The parameter O2 is given by
= +D D D/( )O knudsen,O knudsen,O bulk,O N2 2 2 2 2 . Deff,an denotes the average

effective diffusivity coefficient for a gas mixture of H2 and H2O in the
anode, with the expression = +D p p D p p D( / ) ( / )eff,an H O 0 eff,H H 0 eff,H O2 2 2 2 .
For the sake of simplicity, when the partial pressure of H2 does not
change critically in the anode, Deff,an is considered as a constant [17].
Deff,cat represents the effective diffusivity coefficient for O2 in the
cathode, thus =D Deff,cat eff,O2.

The effective diffusivity coefficients D D,eff,H eff,H O2 2 , and Deff,O2 in
porous electrodes depend on both the gaseous molecular diffusivity
Dmolecular and the pore structures inside the electrodes [42]:

=D D i, {H , H O, O , N }i ieff,
p

tor
molecular, 2 2 2 2 (15)

where p is the porosity of the electrodes and tor represents the tortu-
osity, which depends on the pore’s tortuous nature and typically varies
between 1 and 10 in SOFC electrodes [43]. In porous media, the mo-
lecular diffusion of gas is basically governed by two possible events,
gas-gas collisions and gas-wall collisions, also known as the bulk dif-
fusion and the Knudsen diffusion, respectively. Generally, the mole-
cular diffusivity, Dmolecular, is attributed to both bulk diffusivity, Dbulk,
and Knudsen diffusivity, Dknudsen, with the following expression:

= +
D D D

1 1 1
i i imolecular, bulk, knudsen, (16)

where the Knudsen diffusivity is dependent on the average pore size of
the porous medium (rp), the molecular weight of the gas (Mi), and the
operating temperature (T), given by:
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Whereas the bulk diffusivity can be approximated by Fuller-Schettler-
Giddings equation in the case of a gas mixture of A and B [42]:
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where VA and VB are the sum of the diffusion volume for compo-
nent A and B, respectively.

2.3. Activation overpotential

Activation overpotential is a voltage loss that is sacrificed to over-
come the activation barrier associated with electrochemical reactions in
SOFCs. It reflects the kinetics of electrochemical reactions, which is
commonly predicted by the Butler-Volmer equation [44]:

=j j n F
T

n F
T

exp exp (1 )e e
0,electrode act,electrode act,electrodeR R

(19)

Here, is the electronic transfer coefficient and ne is the number of
transferred electrons. The value of depends on the symmetry of the
activation barrier. If the reactions are symmetric, = 0.5. Otherwise, in
most cases, ranges from about 0.2 to 0.5 [43], depending on the
electrochemical reactions and the choice of catalysts. j0,electrode re-
presents the exchange current density, which describes the rate of ex-
change between the reactant and product states at equilibrium. j0,electrode
can be calculated as follows [44]:
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where an and cat are pre-exponential coefficients for reactions on the
anode and cathode side, respectively, and Ean and Ecat are the corre-
sponding activation energy for reactions on the anode and cathode side,
respectively. Although a lot of studies have been conducted to estimate
the activation overpotential in SOFCs [43], it remains a challenge to
provide exact information of all the parameters in the above model.
Therefore, a GSA on the SOFC electrochemical model is necessary to
quantify the impact of each uncertain parameter on the performance of
SOFCs, so as to further determine the sources of uncertainty in pre-
dicting and optimizing the SOFC performance.

3. Global sensitivity analysis

In this work, the BSPCE approach is used to perform GSA on the
SOFC electrochemical model. To this end, machine-learning models
that represent the input-output relationship of the electrochemical
model are constructed in the Bayesian framework. Because only the
critical polynomial terms are retained within this approach, problems
regarding overfitting can be prevented. Moreover, due to its specific
properties, the BSPCE model is particularly efficient in computing
variance-based sensitivity indices of different orders for each input
parameter, requiring negligible additional computational effort sub-
sequent to its construction [36].

3.1. Bayesian sparse polynomial chaos expansion

Let us assume the uncertain input parameters of the SOFC model are
independent. A random vector = …x x x x( , , , )n1 2 is used to denote the
normalized inputs, which are uniformly distributed over the n-dimen-
sional unit hypercube n. Meanwhile, the output of interest in the SOFC
model is considered as a scalar, where the standardized form of which is
denoted by y (i.e., with mean 0 and variance 1). The case of multiple
outputs is treated in the same way as discussed in the sequel. The input-
output relationship of the SOFC model can be expressed by the fol-
lowing polynomial chaos expansion [32]:

= = =…
=

x x x xy a x( ) ( ), with ( ) ( ) ( )
b

b b b b
i 1

n

b ib
n

1 n i (22)

where x( )b is a multidimensional polynomial basis, given by the
tensor product of univariate orthonormal shifted-Legendre poly-
nomials. The ab’s are the polynomial coefficients, and = …b b b1 n
(b i n, 1i ) is an n-dimensional index, in which bi represents
the degree of the univariate polynomial x( )b ii . Thus, the total degree
of the term x( )b is =b b| | i 1

n
i.

The key of the problem is to identify the polynomial coefficients
based on observed input-output data. To render this problem computa-
tionally tractable, b| | needs to satisfy the condition b d| | so that the
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polynomial chaos expansion is truncated and only a finite number of
terms are retained up to polynomials of degree d. The total number of
unknown coefficients, P, in this truncated polynomial chaos expansion
can be calculated from the maximal degree, d, and the number of in-
puts, n, by = +P n d n d( ) !/( ! !), where P increases polynomially with n
and d.

For high-dimensional or high-degree problems, it is obvious that a
large number of unknown coefficients needs to be identified within this
polynomial chaos expansion, which may lead to computational issues
such as overfitting and curse of dimensionality. To prevent these pro-
blems, Bayesian model evidence is used to conduct model selection and
construct a sparse representation of the model, namely a Bayesian
sparse polynomial chaos expansion, where the Kashyap information
criterion is adopted to retain only a small number of polynomial basis
functions without sacrificing the accuracy [36]. Moreover, based on the
Bayes theorem, a maximum a posteriori estimate of polynomial coef-
ficients are computed and used as the most likely parameter set for the
BSPCE, considering not only the fit of the observed data, but also the
prior information about the coefficients (see [36] for more details). We
denote the resulting BSPCE as follows:

x x b by a d( ) ( ), and { : | | }
b

b b
d n d n n, ,

(23)

such that card( ) card( )d n, (the operator ‘card’ provides the car-
dinality of a set).

To assess how well the obtained BSPCE model fits the observed
data, , the coefficient of determination R2 is calculated by

=
+x

R 1
( ( ( ) ¯ ))

( ¯ )

2
2

2 (24)

where ¯ denotes the mean value of the observed data and denotes the
standard deviation. As mentioned above, the BSPCE model x( )
predicts the standardized values, y, which are then transformed into
real space using ¯ and . Note that R2 ranges from 0 to 1. When R2

approaches 1, this indicates that the BSPCE model fits the data well,
otherwise, the BSPCE model cannot well explain the observed data.
Besides, when ( , ) is used as the training data set, the resulting R2

based on the same data set can be too optimistic to be a reliable in-
dicator to evaluate the performance of . Thus, R2 on a validation
data set is often adopted to assess the predictive ability of the BSPCE
model.

3.2. Derivation of Sobol’ indices

The impact of uncertain input parameters on the electrochemical
performance of SOFCs is measured by Sobol’ indices. They are variance-
based sensitivity metrics, which can be easily derived from the BSPCE
model that casts the input-output relationship onto orthonormal
polynomials. By Sobol’ decomposition [30], the total variance of y can
be derived from the coefficients of analytically:

= a
b

b
0{ }

2

(25)

The partial variance of y due to the sth-order interaction of the subset of
input parameters …{ }x x, ,i is1 is computed as follows:
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…

a
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2

s
i1 is
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where …i is1 denotes a subset of multidimensional indices in such that
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The Sobol’ indices are simply the ratio of partial variances to the total
variance of y. For instance, the Sobol’ index due to the sth-order inter-
active effect of the input variables …{ }x x, ,i is1 is estimated as

=… … /i i i is s1 1 , the value of which is always between 0 and 1. Thus a

higher Sobol’ index implies that the contribution of the associated
parameters to the variance of y is more important. In particular, the
first-order, second-order, and total Sobol’ indices can be derived from
the above equations:

= = =
>

, ,
b

bi
i

ij
ij

Ti
b 0: i (28)

The first-order Sobol’ index i measures the influence due to the
parameter xi alone, which reflects the marginal effect of xi that is de-
fined by:

+x x a a x( )d ( )
b

b bi i0n
i

1
(29)

In the above expression, xd in 1 denotes the integration over all
variables except xi. The second-order Sobol’ index, ij, accounts for the
cooperative effect of xi and xj. The total Sobol’ index, Ti, summarizes
the overall contribution of input parameter, xi, by taking into account
its marginal effect and all its interactive effects. It should be noted that
the more Ti deviates from i, the more preponderant the interaction
effects among parameters.

4. Construction of BSPCE models

4.1. Verification of the electrochemical model

This work aims to assess the impact of uncertain parameters on SOFC
performance by performing GSA on the SOFC electrochemical model.
Following the BSPCE approach, the mathematical model described in
Section 2 is used to prepare data for training the BSPCE models. Thus, it is
a prerequisite to justify the validity of the model in predicting the elec-
trochemical performance of SOFCs. To this end, the existing experimental
data from Huang et al. [45] are used to verify this electrochemical model.
In [45], a planar SOFC with straight open pores in the anode is tested at
different operating temperatures. The anode substrate of this SOFC is
prepared using a phase-inversion tape casting method with a mix of NiO
(NOVAMET, Japan) and YSZ (TZ-8Y, Tosoh co., Japan) (volume ratio of
57.3:42.7). The thickness of the anode layer is about 1 mm. The sample is
cut into a disc shape of diameter 18 mm. A thin YSZ (TZ-8Y, Tosoh co.,
Japan) electrolyte layer of about 10 µm thick is applied to the anode
substrate using the dipcoating method. The composite cathode is made of
a mix of LSM and YSZ with a weight ratio of 50:50. The manufactured
SOFC is supplied with pure, humidified ( 3%H2O) hydrogen as fuel in the
anode, and stationary air as the oxidant in the cathode. The electro-
chemical performance of the cell is measured under open circuit condi-
tions with an electrochemical system (Zahner Im6ex electrochemical
workstation). The operating conditions and model parameters for this
SOFC are listed in Table 2, where some parameters are measured or
controlled by experiments, such as operating temperature, fuel composi-
tion, thickness of electrodes, and others are obtained empirically from
existing literature, such as conductivities of electrodes and electrolyte,
tortuosity of electrodes, and activation energy. In particular, as this cell
contains a finger-like layer in the anode with pores tens of micrometers in
diameter, the average pore radius takes a relatively large value, whereas
the tortuosity of electrodes is relatively low (see Table 2). Considering the
microstructure of porous electrodes, the effective electronic conductivities
of anode and cathode are generally lower than that of the intrinsic ma-
terials such that =an an Ni and =cat cat LSM. Here an and cat are re-
duction factors that are primarily determined by the effective relative
density of electrode particles [46]. The computation of these factors are
detailed in Supplemental Material. For more details regarding the proce-
dure of preparation and measurement for this SOFC, please refer to the
literature [45]. It should be noted that the experimental open circuit po-
tentials are usually lower than theoretical values [47], because problems
such as current leakage, gas crossover, and side reactions often exist in real
SOFC systems [43]. This potential difference is considered as ‘leak
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overpotential’ and kept constant in this study, which yields a cell output
voltage such that = + + +U U ( )OCP

ohm conc act leak . Using these
parameters, the output voltage and power density ( =P jU ) of the SOFC
are computed at different operating temperatures based on the afore-
mentioned electrochemical model. As depicted in Fig. 1, the model-pre-
dicted results are compared with the experimental data reported in [45],
where a fairly good agreement is found, indicating the validity of the
presented mathematical model in predicting the electrochemical perfor-
mance of SOFCs. To further justify the generality of this electrochemical
model, a validation on the experimental data from Ding et al. [48] is
performed as well. The related parameters and results are reported in
Supplemental Material.

4.2. Definition of input parameters

Before conducting GSA on the electrochemical performance of
SOFCs, we need to determine which uncertain input parameters need to
be analysed and their possible intervals of variation. Based on the SOFC

electrochemical model described in Section 2, 19 uncertain input
parameters are defined in Table 3, consisting of parameters related to
operating conditions (e.g., operating temperature), geometry of SOFC
(e.g., thicknesses of electrodes and electrolyte), microstructure of
porous electrodes (e.g., porosity, tortuosity), as well as some empirical
coefficients (e.g., electronic conductivity coefficients, pre-exponential
coefficients). Uncertainties in some of these parameters, such as elec-
tronic conductivity coefficients, tortuosity, and pre-exponential coeffi-
cients of electrodes, arise from our imperfect knowledge of the SOFC
properties and its electrochemical reactions. While for other para-
meters, such as operating temperature, anode thickness, etc., the un-
certainty is taken into account to study how the variation of these
parameters influences the model output. Regarding the varying inter-
vals of these parameters, the temperature is taken to range between
973 K and 1123 K, which is the typical operating temperature of SOFCs
[43]. The varying interval of thickness of electrodes and electrolyte are
summarized from the review work of Mahato et al. [6]. Herein, a
commonly used anode-supported SOFC is considered, with a much
thicker anode layer than electrolyte and cathode. The range of values
for electronic/ionic conductivity coefficients are determined empiri-
cally considering the fitting of experimental data [43,49]. The max-
imum current density is selected to be 0.8 A cm−2 to ensure the pre-
dicted output voltage is non-negative. Other parameters are varied in
the relatively wide ranges that can be found in literature. For instance,
the porosity of electrodes ranges between 0.1 and 0.7 [21], while the
pre-exponential coefficients for anode and cathode vary from ×2 109 to
1011 A m−2 [18]. Due to lack of prior information, uniform distributions
are selected for all parameters to draw general conclusions for the SOFC
model. Yet, relatively large intervals are defined to investigate the
global effect of model parameters without missing any critical regions.
Herein, all parameters are assumed to be statistically independent.

Note that instead of choosing electronic and ionic conductivities
( ,an act, and el) as uncertain input parameters, the corresponding
coefficients (e.g., A B,an an, etc.) are investigated in this work to elim-
inate the strong dependence of conductivity on the temperature. As it is
not easy to measure the coefficients experimentally, the values of Ak
and Bk are usually determined empirically. To justify the selected
parameter intervals, a group of ×2 611 samples is randomly drawn for
the 6 conductivity coefficients from the relevant intervals defined in
Table 3. Using these samples, the conductivities ,an act, and el are
computed by Eqs. (9) and (10), leading to a size of 211 data for each
electric conductivity as plotted in Fig. 2. It is observed in Fig. 2 that the
ionic conductivity of the electrolyte is orders of magnitude lower than
the electronic conductivity of electrodes. This is typical in SOFCs due to
the different mechanisms for electronic and ionic conduction, as men-
tioned earlier. Besides, conductivities of some commonly used elec-
trodes and electrolytes, such as Ni/YSZ, LSM, GDC, etc., are marked in
Fig. 2 with red diamonds. It is noted that all these materials’ con-
ductivities are reasonably located within the range of Monte Carlo
samples, which indicates the justifiability of selected parameters in-
tervals.

4.3. Training and validation of BSPCE models

To perform GSA, machine-learning models are constructed with
BSPCE to describe the relationship between the input parameters and
the output performance of SOFCs. Hence several output metrics are
assessed to quantify the electrochemical performance of SOFCs, in-
cluding the Ohmic, concentration, and activation overpotentials ( ohm,

conc,anode, conc,cathode, act,anode, and act,cathode), the cell output voltage
(U), the power density (P), as well as the voltage efficiency of the fuel
cell ( = U U/voltage

OCP). To train the machine-learning BSPCE models, a
data set including information about the input parameters and output
metrics is created. For this purpose, an experimental design of size

×2 1912 is randomly drawn from the 19 input parameter intervals with
quasi-Monte Carlo sampling. Then, the output metrics are computed

Table 2
Parameters used for SOFC electrochemical model verification.

Operating temperature =T 973 1073 K [45]
Operating pressure =p 1.00 atm [45]
Fuel composition =x x: 0.97: 0.03H2 H2O [45]
Air composition =x x: 0.21: 0.79O2 N2 [45]
Anode thickness = 1000.0an µm [45]
Cathode thickness = 20.0cat µm [45]
Electrolyte thickness = 10.0el µm [45]
Electronic conductivity of Ni = × T3.27 10 1065.3Ni 6 1 m−1 [40]
Electronic conductivity of LSM = × ( )expT TLSM

4.2 107 1150 1 m−1 [40]

Electrolyte ionic conductivity = × ( )3.34 10 exp TYSZ 4 10300 1 m−1 [40]

Porosity of electrodes = 0.6p [43]
Tortuosity of porous electrodes = 1.0tor [43]
Average pore radius =r 20.0p µm [45]
Anode pre-exponential coefficient = ×3.4 10an

9 A m−2 [18]
Cathode pre-exponential

coefficient
= ×2.0 10cat

9 A m−2 [18]

Anode activation energy = ×E 9.0 10an 4 J mol−1 [18]
Cathode activation energy = ×E 1.03 10cat 5 J mol−1 [18]
Electronic transfer coefficient = 0.16 [43]
Leak overpotential = 0.13leak V [45]

Fig. 1. Comparison of the model-predicted output voltage (the descending
curves) and power density (the bell-shaped curves) with the experimental data
reported in [45] at different operating temperatures. The black dashed line
represents the theoretical open circuit potential at 973 K, and the grey dashed
line is the experimental measured open circuit voltage at 973 K. The difference
between them approximates the leak overpotential leak.
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using the SOFC electrochemical model described in Section 2, resulting
in a ×2 2712 data matrix, which consists of ×2 1912 input samples and

×2 812 output metrics. Randomly choosing ×2 2711 samples from the
data matrix as a training set, 8 machine-learning BSPCE models are
constructed, respectively, for the 8 scalar output metrics based on the
BSPCE approach.

As shown in Fig. 3, the BSPCE-predicted overpotentials and output
voltage are firstly compared with the model-calculated data from the
training set, and then tested by a validation set consisting of an extra 211

Monte Carlo simulations. Note that this validation set does not coincide
with the training set used for the construction of the BSPCE model.
Besides, as the power density and voltage efficiency of the SOFCs are
strongly dependent on the current density and cell output voltage, re-
spectively, here we focus on the GSA of overpotentials and output
voltage. The results for power density and efficiency are shown in the
Supplemental Material. The comparisons in Fig. 3 show that, for Ohmic
and concentration overpotentials ( ,ohm conc,anode, and conc,cathode), re-
markable agreement is obtained between the model-calculated over-
potentials and the BSPCE-predicted values, with the coefficients of
determination (R2) for both training and validation sets being larger
than 0.97. Basically, R2 for the validation set is slightly lower than that
of the training set, with a difference of around 0.01. An excellent match
is found between the ideal fit and the linear fit of model-calculated data
to the BSPCE-predicted values, which confirms that the BSPCE models
reproduce well the physical model-calculated Ohmic and concentration
overpotentials. Meanwhile, for the activation overpotential

( ,act,anode act,cathode), discrepancies between the BSPCE-predicted and
model-calculated values are observed. R2 for the training set is still
larger than 0.97, while the validated R2 decreases to less than 0.97 and
0.94 for the anode and cathode activation overpotential, respectively.
The deviation between the ideal fit and the linear fit to BSPCE-predicted
values shows a slight underestimation of the BSPCE-predicted values
compared to the model-calculated results at high activation over-
potentials. Indeed, the input-output relationship is more complex for
the activation overpotential than for Ohmic and concentration over-
potentials, as presented in Section 2. Moreover, the relevant uncertain
parameters’ intervals for activation overpotential model are relatively
generous, resulting in a large uncertainty in the output data set (ranging
from 0 V to about 1.05 V). Therefore, the activation overpotential is
more difficult to predict than Ohmic and concentration overpotentials
via the machine-learning BSPCE model. Regarding the overall output
voltage, Fig. 3 shows that R2 decreases to 0.95 and 0.92 for the training
and validation set, respectively, indicating a discrepancy between the
BSPCE-predicted values and the model-calculated data. The linear fit to
the BSPCE-predicted values reveals a slight overestimation at low vol-
tages. The output voltage of SOFC is not easy to predict due to the lack
of knowledge in SOFC working mechanisms and its complex relations
with input parameters. The BSPCE model developed here exhibits a
similar issue. Overall, all BSPCE models show good ability to reproduce
both the training and validation sets. Thus, the accuracy of these
models is sufficient to obtain reliable sensitivity indices.

Table 3
Uncertain input parameters of the SOFC electrochemical model.

Parameter Notation Unit Type of PDF Range of values Reference

Operating temperature T K Uniform [973, 1123] [43]
Anode thickness an m Uniform [500, 1000]× 10 6 [6]
Cathode thickness cat m Uniform [10, 100]× 10 6 [6]
Electrolyte thickness el m Uniform [5, 20]× 10 6 [6]
Anode electronic conductivity Aan 1 m−1 Uniform [2, 3500]× 103 [49]
coefficients Ban K−1 Uniform [3, 7]× 10 4 [49]
Cathode electronic conductivity Acat K 1 m−1 Uniform [4, 20]× 107 [43]
coefficients Bcat J mol−1 Uniform [5, 20]× 103 [43]
Electrolyte ionic conductivity Ael K 1 m−1 Uniform [3, 30]× 107 [43]
coefficients Bel J mol−1 Uniform [5, 10]× 104 [43]
Porosity of electrodes p / Uniform [0.1, 0.7] [21]
Tortuosity of porous electrodes tor / Uniform [1, 10] [43]
Average pore radius rp m Uniform [0.3, 20]× 10 6 [43,45]
Anode pre-exponential coefficient an A m−2 Uniform [2, 100]× 109 [18]
Cathode pre-exponential coefficient cat A m−2 Uniform [2, 100]× 109 [18]
Anode activation energy Ean J mol−1 Uniform [9, 14]× 104 [18]
Cathode activation energy Ecat J mol−1 Uniform [9, 14]× 104 [18]
Electronic transfer coefficient / Uniform [0.15, 1] [43]
Current density j A cm−2 Uniform [0, 0.8]
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Fig. 2. Electronic and ionic conductivities of the anode, cathode, and electrolyte with respect to temperature variation based on randomly sampled conductivity
coefficients. Conductivities of some typical materials used for SOFC anode [49], cathode, and electrolyte [43] are marked with red diamonds, which are well located
within the range of sampled conductivities.
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5. Results and discussions

5.1. GSA of overpotentials

The BSPCE models presented in Section 4 are used to perform GSA
on the electrochemical performance of a SOFC unit, based on which the
first-order and total Sobol’ indices are computed analytically for each
input parameter. The Sobol’ indices of the most sensitive parameters for
Ohmic, concentration, and activation overpotentials are shown in
Fig. 4. In each panel, the x-axis represents the input parameters, and the
y-axis stands for the values of relevant total and first-order Sobol’ in-
dices. The total Sobol’ indices, depicted as blue bars in Fig. 4, quantify
the contribution of both individual and interactive effects of parameters
to the variance of overpotentials; while the first-order indices, pre-
sented by red bars, measure merely individual parameter contributions
to the variance of model outputs. The distance between the two bars
reveals the total interactive contribution of one parameter with all the
other parameters. We note in Fig. 4 that the total Sobol’ indices are
generally higher than the corresponding first-order Sobol’ indices, im-
plying the existence of interactive effect among parameters. On one
hand, to further study the univariate influence of each parameter onto
the model output, the marginal effect of sensitive parameters is plotted
in Fig. 5. This univariate effect is computed by considering the evolu-
tion of model outputs with respect to a single parameter averaged on
other parameters (see Eq. (29)), and then scaled for ease of view. On the
other hand, to investigate the interactive effect, the second-order Sobol’
indices, which quantify the contribution of pairwise interactions be-
tween two parameters on the variance of model outputs, are calculated
and plotted using 3D histograms as shown in Fig. 6.

Ohmic overpotential – Examining the Sobol’ indices for Ohmic
overpotential in Fig. 4 shows 5 sensitive parameters, i.e., the tem-
perature T, the thickness of electrolyte el, the ionic conductivity coef-
ficients of electrolyte Ael and Bel, and the current density j. Among these
parameters, Ael and Bel are the most sensitive ones, accounting for
about 40% of the total variance in the Ohmic overpotential, which
indicates that the ionic conductivity of the electrolyte plays a rather

important role in Ohmic overpotential. Besides, it is noted that the
thickness and electronic conductivities related to the anode and
cathode have a negligible influence on the Ohmic overpotential. This is
typical in SOFCs as the ionic conductivity of the electrolyte is normally
several orders of magnitude lower than the electronic conductivities of
electrodes, making the ionic charge transport far more difficult than
electronic charge transport. Thus, the resistance to ionic transport in
electrolytes tends to be the main source for Ohmic overpotential in
SOFCs. Besides, it is observed in Fig. 4 that the thickness of the elec-
trolyte el has a relatively small impact on Ohmic overpotential. This is
due to the relatively small uncertainty range defined for el in the case
of anode-supported SOFCs. For other types of SOFCs, such as electro-
lyte-supported SOFCs, the thickness of the electrolyte may show a more
significant contribution on Ohmic overpotential.

The marginal effects of parameters displayed in Fig. 5 are found to
be consistent with relevant Sobol’ indices as shown in Fig. 4. It is ob-
served in Fig. 5 that the Ohmic overpotential decreases with the in-
crease of operating temperature, T. Indeed, the higher temperature
enhances the ionic conductivity of electrolyte, which in turn reduces
the resistance to charge transport. Conversely, the increase of electro-
lyte thickness el slightly raises the Ohmic overpotential, because a
longer path makes it more difficult for ionic charge transport in SOFC
electrolytes. The coefficients Ael and Bel show a significant univariate
effect on Ohmic overpotential. In particular, when Ael is less than

×12 107 K 1 m−1 and Bel is larger than ×8 104 J mol−1, the Ohmic
overpotential increases dramatically. Typically, ionic conduction occurs
in an electrolyte via the vacancy diffusion mechanism, where the ion
mobility is dependent on the rate of the hopping process of ions from
position to position within the lattice. This hopping rate is ex-
ponentially activated by the size of the energy barrier for motion. In
general, materials with a higher activation energy Bel yield lower ionic
conductivity, and thus higher Ohmic overpotential. Contrarily, as Ael
reflects the attempt frequency of the hopping process, the increase of
Ael enhances the ionic conductivity of materials and hence reduces the
Ohmic overpotential. The values of Ael and Bel are related to inherent
properties of electrolyte materials, such as the site fraction of oxygen
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Fig. 3. Comparison of model outputs ( ohm, conc,anode, conc,cathode, act,anode, act,cathode, and U) between the BSPCE-predicted values and model-calculated data, in-
cluding the training set and the validation set. The dashed lines are the ideal 1:1 ratio, whereas the solid lines are the fit to the predicted values. The deviations
between the dashed lines and the solid lines show slight underestimation at high values for the activation overpotential, and slight overestimation at low values for
the output voltage.
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vacancies, the jump distance of an ion, and the entropy and enthalpy of
migration. Actually, exact values of these parameters are difficult to
obtain either experimentally or theoretically, which eventually leads to
large uncertainties in model-predicted Ohmic overpotentials. For in-
stance, it is noted in Fig. 3 that the maximum ohm reaches more than
0.4 V in the training samples, while the minimum ohm is about 0 V.
Therefore, in order to make precise predictions of Ohmic overpotential
in SOFCs, it is important to accurately measure the ionic conductivity of
the electrolyte or the corresponding coefficients.

Moreover, it is noted in Fig. 4 that the distance between the total
and first-order Sobol’ indices are considerably large, indicating that
remarkable interactive effect exists among these parameters. As de-
picted in Fig. 6, for Ohmic overpotential, all 5 sensitive parameters are
found to interact with each other, among which the coefficient Bel
shows the most significant interaction effect with other parameters. For
instance, Ael and Bel presents a highly pairwise interaction effect on
Ohmic overpotential, which contributes even more than the individual
effect of Ael. This suggests that to design a SOFC with low Ohmic
overpotential, it is much more efficient to optimize Ael and Bel si-
multaneously than the individual adjustment of each parameter. Be-
sides, even though el shows slight marginal effect on the Ohmic over-
potential, its interaction with Bel is significant, implying that the
contribution of el cannot be neglected in the optimal design of SOFCs.
Actually, except for the individual effect of each parameter, the var-
iance of Ohmic overpotential is remarkably attributed to Bel interacting
with other parameters, i.e., T A, ,el el, and j. Therefore, all 5 input
parameters need to be considered carefully to predict Ohmic over-
potential in SOFCs owing to their critical contributions to interaction
effects.

Concentration overpotential – First-order and total Sobol’ indices of
the most sensitive parameters for anodic and cathodic concentration
overpotentials are displayed in Fig. 4. Obviously, the porosity p, tor-
tuosity tor of electrodes and current density j are the most important
parameters, which explain 50%-80% of the total variance in the con-
centration overpotential. The thickness of cathode, cat, shows a higher
sensitivity index than the thickness of anode, an, indicating that the
cathodic concentration overpotential is attributed more to the thickness
of the electrode than the anodic concentration overpotential. This may
be explained by two reasons, i.e., the relatively larger uncertainty range
defined for cat as compared to that of an, and different assumptions

that have been made to model the gas diffusion in the anode and
cathode layers. It is also worthwhile noting that, although the tem-
perature is taken into account in the concentration overpotential model,
it is found to exhibit a negligible effect on concentration overpotential
at the present conditions considered in this work.

Examining the marginal effect in Fig. 5 shows that the concentration
overpotential increases with the increase of an and cat. Apparently, the
increase of porous electrode thickness results in thicker diffusion layers,
leading to higher concentration losses. The porosity, p, tortuosity, tor
and average pore radius, rp, characterize the main features of the mi-
crostructure for porous electrodes. High porosity, low tortuosity, and
large pore radius would enhance the effective diffusivity of the elec-
trode and make the species diffusion more efficient. Thus, the con-
centration overpotential can be ideally mitigated by optimizing the
microstructure of porous electrodes. For example, Fig. 5 shows a re-
markable increase of concentration overpotential when the porosity is
less than 0.3, which suggests an optimal design of electrode porosity to
be larger than 0.3. Besides, the current density has a significant effect
on the concentration overpotential as well. Increasing the current
density intensifies the reactant depletion on the electrode/electrolyte
interface, and thus enhances the concentration losses.

Checking the total and first-order Sobol’ indices of concentration
overpotential implies that interactions between parameters are vir-
tually absent in the anodic concentration overpotential model, whereas
more interaction effects between parameters are exhibited for the
cathodic concentration overpotential. As illustrated in Fig. 6, the cur-
rent density, j, tortuosity, tor, porosity, p, and thickness of cathode, cat,
show the most significant pairwise interactions on conc,cathode. The dif-
ference between the sensitivity effects of parameters on conc,anode and

conc,cathode is due to the distinct diffusive mechanisms of H , H O2 2 , and
O2 in the anode and cathode, where different theories and models are
used to compute the concentration overpotentials. Furthermore, com-
paring the values of conc,anode and conc,cathode in Fig. 3, we find that

conc,anode varies between 0 and 0.15 V, while conc,cathode is less than
0.008 V. Typically, O2 diffuses more slowly than H2, and air is often
used instead of pure O2 in SOFCs, leading to more severe concentration
overpotential in the cathode. However, this is not the case herein. This
is because the anode-supported SOFC considered in this work has a
much larger anode thickness than that of cathode, resulting in a longer
path of species diffusion in the anode layer. Therefore, to reduce the
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concentration overpotential of the anode-supported SOFC, it is im-
portant to optimize the microstructure of the anode.

Activation overpotential – Typically, the activation overpotential
affects the electrochemical performance of SOFC drastically. As shown
in Fig. 3, at the present condition considered in this work, the maximum
value of anodic activation overpotential is larger than 0.9 V, and that of
cathodic activation overpotential reaches about 0.6 V, which are ap-
parently larger than that of the Ohmic and concentration over-
potentials. Activation overpotential is potentially influenced by many
parameters, e.g., temperature, porosity of electrodes, electronic transfer
coefficient, and activation energy. In Fig. 4, we observe that the reac-
tion kinetic parameters, i.e., activation energy Ean and Ecat, and pre-
exponential coefficients an and cat, are the most important parameters,
contributing more than 40% to the variance of the activation over-
potential. Conversely, parameters including porosity, tortuosity, and
thickness of electrodes show very small Sobol’ indices (less than 0.02,
not shown in the figure), indicating that they have little influence on
the activation overpotential, which also implies the reaction kinetics of
the considered SOFC unit is only slightly affected by the reactant and

product concentrations at TPBs.
The marginal effect of the sensitive parameters plotted in Fig. 5

shows that the activation overpotential decreases with the increase of
pre-exponential coefficients. A significant drop can be found in both

act,anode and act,cathode when the pre-exponential coefficients increase
from ×2 109 A m−2 to about ×20 109 A m−2. Contrarily, the increase of
activation energy enhances act,anode and act,cathode exponentially, owing
to the fact that the increase of activation energy enlarges the size of the
energy barrier between the reactant and activated states, which affects
the reaction kinetics adversely. Specifically, to lower the activation
overpotential, the univariate effect of Ean and Ecat suggests a desired
activation energy in both the anode and cathode layers to be less than

×11 104 J mol−1. Besides, increasing the electronic transfer coefficient
can lead to a lower activation overpotential as well. But the effect of

is not as significant as that of E E, ,an cat an, and cat.
The differences between total and first-order Sobol’ indices imply

the important interactive effect of parameters on activation over-
potential. It is shown in Fig. 6 that the activation energy, pre-ex-
ponential coefficient, and electronic transfer coefficient not only exhibit
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high univariate effects on activation overpotential, but also contribute a
considerable pairwise interaction effect, which emphasizes the im-
portance of these parameters to the optimal design of SOFCs. Essen-
tially, the selection of the catalyst on the surface of electrodes de-
termines the values of E E,an cat, and . For instance, a catalytic
electrode lowers the activation barrier for the reaction by changing the
free-energy surface, which consequently decreases the activation en-
ergy and reduces the activation overpotential. In fact, a highly catalytic
electrode with large electronic transfer coefficient provides the possi-
bility of lowering the activation overpotential significantly. Therefore,
the choice of catalyst in SOFCs is rather important to reduce the acti-
vation overpotential. Besides, the measurement and identification of
the corresponding reaction kinetic parameters in SOFCs are essential for
the accurate prediction of the activation overpotential.

5.2. GSA of the output voltage

GSA of the output voltage of a SOFC is a complex task, as the Ohmic,
concentration, and activation overpotentials are considered, and all the
19 uncertain input parameters are expected to affect the output voltage
prediction. According to the computed first-order and total Sobol’ in-
dices, 10 parameters that have major contributions to the variance of
output voltage are listed in Fig. 7(a). Apparently, the activation energy
Ean, pre-exponential coefficient an of anode, and current density j are
the most influential parameters, with the values of their first-order
Sobol’ indices being larger than 0.1, and explaining about 50% of the
total variance of output voltage. Besides, large differences are observed
between the total and first-order Sobol’ indices for E ,an an, and .
Checking the second-order Sobol’ indices plotted in Fig. 7(b) indicates
that these three parameters provide the most significant pairwise in-
teraction effect. The marginal effect shown in Fig. 7(c) generally agrees
with the values of Sobol’ indices. It is noted that the increase of pre-
exponential coefficients an and cat, electronic coefficient , or the de-
crease of activation energy Ean and Ecat, that significantly reduce the
activation overpotentials as stated before, in turn lead to a considerable
rise of the output voltage. Meanwhile, the Ael and Bel that mainly affect

the Ohmic overpotential are found to have a little contribution on the
variance of the output voltage. This is due to the fact that the variations
of anodic and cathodic activation overpotentials are relatively sig-
nificant comparing to the Ohmic and concentration overpotentials for
the cases studied in this work. Thus, the variance of the output voltage
is mainly attributed to the parameters that are important for activation
overpotentials. Moreover, the high current density enhances all the
overpotentials, eventually resulting in a low output voltage. In contrast,
high temperature reduces the Ohmic and activation overpotentials, and
thus increases the output voltage considerably.

Examining the 19 input parameters, we find that the thickness of
electrodes and electrolyte, the electronic conductivity coefficients, the
tortuosity, and the average pore radius of the anode and cathode have
little impact on the output voltage of the studied anode-supported
SOFC. While the operating conditions, e.g., the operating temperature
and the current density, are important to the SOFC output voltage. The
most influential factors are the reaction kinetic parameters of the
electrodes, i.e., E E, , ,an cat an cat, and , which are related to the se-
lection of catalysts for electrochemical reactions. The porosity of elec-
trodes slightly affects the output voltage due to the low concentration
overpotential obtained in this study. This is probably because the in-
terval of current density considered in this work is still far from the
limiting current density, thus mass transport limitations are not sig-
nificant. The ionic conductivity coefficients of the electrolyte, which
determine the ionic conductivity and Ohmic overpotential of the SOFC,
do not play a very important role in the total variance of the output
voltage as expected, because the electrolyte thickness is rather small in
the considered anode-supported SOFC. Thus, to improve the electro-
chemical performance of SOFC and to obtain the desired power density,
it is important to optimize the process of electrochemical reaction ki-
netics, including the selection of appropriate catalysts and under-
standing of reaction mechanisms. Besides, the interaction effects be-
tween parameters indicate that optimizing the interactive parameters
simultaneously is more efficient and effective in the optimal design of
SOFCs. Furthermore, to precisely predict the electrochemical perfor-
mance of the SOFC with the current model, the measurement and

Fig. 6. Second-order Sobol’ indices of sensitive parameters for Ohmic, concentration, and activation overpotentials. On the diagonal, the blue bars represent the
values of first-order sensitivity indices of parameters, while the quantified pairwise interactions between every two parameters are depicted in the off-diagonal grey
bars.
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identification of the electrochemical reaction kinetic parameters are
particularly essential.

6. Conclusions

In this work, the impact of 19 input parameters related to the mi-
crostructure of the electrodes, material properties, cell structural geo-
metries, electrochemical reaction kinetics, and operating conditions on
the solid oxide fuel cell performance are investigated by performing
global sensitivity analysis on the electrochemical model of a fuel cell.
To compute the sensitivity indices efficiently, the Bayesian sparse
polynomial chaos expansion approach is adopted by constructing a
machine-learning model for each model output with a training data set
of size 211. The constructed machine-learning models are validated to
ensure they are sufficiently accurate to obtain reliable sensitivity in-
dices. Moreover, although not investigated in the present work, the
machine-learning models can be used as efficient alternatives to the
original electrochemical model to predict cell performance in the case
where an extremely large number of simulations are needed. This as
well uncovers the possibility to apply data science techniques to the
field of fuel cell technologies.

Using the Bayesian sparse polynomial chaos expansion models, the
individual effect of each parameter and its interactions with other
parameters on the Ohmic, concentration, and activation overpotentials
as well as the output voltage for an anode-supported solid oxide fuel
cell are quantitatively assessed with the first-order and total Sobol’

indices. In particular, the pairwise interactions between important
parameters are gauged by second-order Sobol’ indices. The marginal
effect of each parameter is depicted to examine how the cell perfor-
mance varies with the change of each parameter, which allows one to
tailor the critical region of the input parameters. The results reveal that
for the anode-supported fuel cell, although the thickness of the elec-
trolyte is relatively small, the Ohmic overpotential is dominated by the
ionic conductivity of electrolyte, indicating the importance of precise
measurement of the ionic conductivity and appropriate choice of elec-
trolyte materials. The concentration overpotential is influenced by the
thickness and microstructural properties of electrodes, an optimal de-
sign of which is expected to reduce the voltage losses due to species
concentrations. The activation overpotential plays the most important
role in the voltage losses as compared to the Ohmic and concentration
overpotentials. Thus, critical parameters such as the pre-exponential
coefficients, the activation energy, and the electronic transfer coeffi-
cient that have significant impact on the activation overpotentials also
show major influence on the cell output voltage, both individually and
interactively. Therefore, to predict the cell output voltage accurately
and to improve cell performance, electrochemical reaction kinetics of
solid oxide fuel cells and the associated parameters are subjected to
further in-depth investigations.

This work shows the effectiveness of the Bayesian sparse polynomial
chaos expansion approach for performing global sensitivity analysis on
the electrochemical model of solid oxide fuel cells. Insightful informa-
tion about the input-output relationship of the model is uncovered via

Fig. 7. Results of GSA on the output voltage of SOFCs. (a) First-order and total Sobol’ indices of 10 of the most sensitive parameters for the output voltage. (b)
Second-order Sobol’ indices of these sensitive parameters for the output voltage. (c) Marginal effect of sensitive parameters on the output voltage. Note that the red
lines representing the univariate effect of parameters are scaled for ease of view.
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sensitivity analysis. The results of this study are expected to provide a
fundamental guideline for the design, optimization, fabrication, as well
as application, of solid oxide fuel cells.
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S1 Computation of effective conductivity in porous electrodes

The effective electronic conductivity through the electrode can be separated into intra-particle

and inter-particle conductivities, in which the resistance caused by the inter-particle is usually

negligible small [1]. Thus the effective conductivity of electrode, σelectrode,eff, is estimated as

σelectrode,eff = ξelectrodeσelectrode (S1)

where σelectrode is the intrinsic material conductivity and ξelectrode is the reduction factor which

is primarily determined by the effective relative density of electrode particles. For Ni/YSZ

anode and LSM/YSZ cathode, the reduction factors are estimated as follows:

ξanode = [(1− εp)ψNiPanode]
µ (S2)

ξcathode = [(1− εp)ψLSMPcathode]
µ (S3)

where µ is the Bruggeman factor that considers the tortuous nature of porous electrodes, ψk

is the volume fraction of k-particles relative to the total solids. The percolation probabilities

Panode and Pcathode are estimated as

Panode =

[
1−

(
3.764− ZNi

2

)2.5
]0.4

(S4)

*Corresponding author. E-mail address: qian.shao@whu.edu.cn.
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Pcathode =

[
1−

(
3.764− ZLSM

2

)2.5
]0.4

(S5)

where Zk is the average coordination number for electrode particles that is a function of the

volume fraction and particle-radii

ZNi = Z̄
ψNi/rNi

ψNi/rNi + ψYSZ/rYSZ
(S6)

ZLSM = Z̄
ψLSM/rLSM

ψLSM/rLSM + ψYSZ/rYSZ
(S7)

Here, Z̄ is an overall average coordination number of all solid particles, which is widely assumed

that Z̄ = 6.

S2 Validation of the electrochemical model

To justify the generality of this electrochemical model, a validation on the experimental data

from Ding et al. [2] is performed. In [2], a single fuel cell of Ni-YSZ/YSZ/LSM-YSZ is tested

at different operating temperatures. The anode substrate of this SOFC is prepared with a mix

of NiO (synthesized by glycine-nitrate process) and YSZ (TZ-8Y, Building Material Academy

of China) in a weight ratio of 1:1. The size of the anode layer is 13 mm in diameter and 0.5

mm in thickness. The YSZ film is about 15 µm. The cathode is made of a mix of LSM and

YSZ in a weight ratio of 6:4. The manufactured single cell is supplied with pure, humidified

(∼3% H2O) hydrogen as fuel in the anode, and stationary air as the oxidant in the cathode.

The electrochemical performance of the cell is measured under open circuit condition using

CHI604B (Shanghai Chenhua Instruments Ltd., China). The operating conditions and model

parameters for this SOFC are listed in Table S1. Using these parameters, the output voltage

and power density of the SOFC are computed at different operating temperatures based on the

electrochemical model. As depicted in Fig. S1, the model-predicted results are compared with

the experimental data reported in [2], where fairly good agreement is found, indicating the

validity and generality of the presented mathematical model in predicting the electrochemical

performance of SOFCs.

S3 GSA of power density and voltage efficiency

Except for the overpotentials and cell output voltage, the power density (P ) as well as the volt-

age efficiency of the fuel cell (εvoltage) are assessed to quantify the electrochemical performance

2



Table S1: Parameters used for SOFC electrochemical model verification

Operating temperature T = 1023 − 1073 K [2]

Operating pressure p0 = 1.0 atm [2]

Fuel composition xH2 : xH2O = 0.97 : 0.03 [2]

Air composition xO2 : xN2 = 0.21 : 0.79 [2]

Anode thickness τan = 500.0 µm [2]

Cathode thickness τcat = 20.0 µm [2]

Electrolyte thickness τel = 15.0 µm [2]

Electronic conductivity of Ni σNi = 3.27 × 106 − 1065.3T Ω−1 m−1 [3]

Electronic conductivity of LSM σLSM =
4.2 × 107

T
exp

(
−1150

T

)
Ω−1 m−1 [3]

Electrolyte ionic conductivity σYSZ = 3.34 × 104 exp

(
−10300

T

)
Ω−1 m−1 [3]

Porosity of electrodes εp = 0.3 [4]

Tortuosity of porous electrodes τtor = 8.0 [4]

Average pore radius rp = 0.8 µm [4]

Anode pre-exponential coefficient γan = 3.4 × 109 A m−2 [5]

Cathode pre-exponential coefficient γcat = 2.0 × 109 A m−2 [5]

Anode activation energy Ean = 9.0 × 104 J mol−1 [5]

Cathode activation energy Ecat = 1.03 × 105 J mol−1 [5]

Electronic transfer coefficient α=0.16 [4]

Leak overpotential ηleak = 0.055 V [2]
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Figure S1: Comparison of the model-predicted output voltage (the descending curves) and power density (the

bell-shaped curves) with the experimental data reported in [2] at different operating temperatures.
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of SOFCs. The power density and voltage efficiency of the fuel cell are computed respectively

by:

P = jU (S8)

εvoltage =
U

UOCP
(S9)

To perform GSA on power density and voltage efficiency, machine-learning models are con-

structed with BSPCE to describe the relationship between the input parameters and the output

performance of SOFCs. As shown in Fig. S2, the BSPCE-predicted power density and volt-

age efficiency are firstly compared with the model-calculated data from the training set, and

then tested by a validation set consisting of extra 211 Monte Carlo simulations. The compar-

isons in Fig. S2 show that, for power density P , remarkable agreement is obtained between

the model-calculated data and BSPCE-predicted values with the coefficients of determination

(R2) for both training and validation sets being larger than 0.99. Basically, R2 for valida-

tion set is slightly lower than that of the training set, with a difference of around 0.003. An

excellent match is found between the ideal fit and the linear fit of model-calculated data to

BSPCE-predicted values, which confirms that the BSPCE models reproduce well the physical

model-calculated power density. This excellent match is probably due to the fact that the

power density is strongly dependent on the current density.
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Figure S2: Comparison of model outputs (P and εvoltage) between the BSPCE-predicted values and model-

calculated data, including the training set and the validation set. The dashed lines are the ideal 1:1 ratio,

whereas the solid lines are the fit to the predicted values. The deviations between the dashed lines and the solid

lines show slight overestimation at low values for the voltage efficiency.

Meanwhile, for the voltage efficiency, similar as the cell output voltage, discrepancies be-

tween the BSPCE-predicted and model-calculated values are observed. Fig. S2 shows that R2
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of the voltage efficiency decreases to 0.95 and 0.92 for the training and validation set, respec-

tively. The linear fit to the BSPCE-predicted values reveals a slight overestimation at low

voltage efficiencies. The voltage efficiency is strongly dependent on the cell output voltage.

Thus, the BSPCE model of voltage efficiency exhibits similar performance of that of the cell

output voltage. Overall, all BSPCE models show good ability to reproduce both the training

and validation sets. And the accuracy of these models is sufficient to obtain reliable sensitivity

indices.

The above-presented BSPCE models are used to perform GSA on the electrochemical per-

formance of a SOFC unit, based on which the first-order and total Sobol’ indices are computed

analytically for each input parameter. The Sobol’ indices of the most sensitive parameters for

power density are shown in Fig. S3. Apparently, the current density j is the most influential

parameter, with the values of first-order Sobol’ indices larger than 0.9, and explaining about

90% of the total variance of power density. The difference between the first-order and total

Sobol’ indices are insignificant, implying that the coupling effect between different parameters

on power density is negligible. Checking the marginal effect of parameters on power density in

Fig. S4 indicates that the power density increases linearly with the increase of current density.

In general, further increase of current density would lower the cell output voltage, and thus

lead to the decreasing of power density. This is not observed in the current study probably

because the maximum current density is still far from the limiting current density.
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Figure S3: Total and first-order Sobol’ indices of the most sensitive parameters for power density.

Voltage efficiency of SOFC is strongly dependent on the cell output voltage. According to

the computed first-order and total Sobol’ indices, 10 parameters that have major contributions

to the variance of voltage efficiency are listed in Fig. S5. The marginal effect shown in Fig. S6
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Figure S4: Marginal effect of sensitive parameters on power density. The blues dots represent the values of

power density with respect to different uncertain parameters. The red lines show the evolution of power density

with respect to a single parameter averaged on other parameters. Note these lines are scaled for ease of view.

generally agrees with the values of Sobol’ indices. The second-order Sobol’ indices are plotted

in Fig. S7. It is noted that all the first-order, total Sobol’ indices and marginal effects on cell

efficiency show similar values and tendency as that on output voltage. And the temperature

exhibits slightly more significant effect on the efficiency than on the output voltage.
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Figure S5: Total and first-order Sobol’ indices of the most sensitive parameters for voltage efficiency.
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Figure S6: Marginal effect of sensitive parameters on voltage efficiency. The blues dots represent the values of

efficiency with respect to different uncertain parameters. The red lines show the evolution of voltage efficiency

with respect to a single parameter averaged on other parameters. Note these lines are scaled for ease of view.

Figure S7: Second-order Sobol’ indices of sensitive parameters for voltage efficiency. On the diagonal, the blue

bars represent the values of first-order sensitivity indices of parameters, while the quantified pairwise interactions

between every two parameters are depicted in the off-diagonal grey bars.
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