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The anisotropic fracture toughness GðθÞ is an intrinsic feature of graphene and is fundamental for
fabrication, functioning, and robustness of graphene-based devices. However, existing results show
significant discrepancies on the anisotropic factor, i.e., the ratio between zigzag (ZZ) and armchair (AC)
directions, GZZ=GAC, both qualitatively and quantitatively. Here, we investigate the anisotropic fracture of
graphene by atomic steps on cleaved graphite surfaces. Depending on the relation between the peeling
direction and local lattice orientation, two categories of steps with different structures and behaviors are
observed. In one category are straight steps well aligned with local ZZ directions, while in the other are
steps consisting of nanoscale ZZ and AC segments. Combined with an analysis on fracture mechanics, the
microscale morphology of steps and statistics of their directions provides a measurement on the anisotropic
factor of GZZ=GAC ¼ 0.971, suggesting that the ZZ direction has a slightly lower fracture toughness. The
results provide an experimental benchmark for the widely scattered existing results, and offer constraints on
future models of graphene fracture.
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Anisotropic fracture toughness is an intrinsic feature of
crystals. It has important implications for cleavage or
growth of crystals with selective surface orientations.
Graphene as a two-dimensional (2D) material has received
intensive attention in the past decades for its exceptional
properties and promising application potentials [1–5]. Its
in-plane fracture is anisotropic, featured by an anisotropic
fracture toughness. This fundamental material property is
important for the fabrication (e.g., mechanical exfoliation)
and robustness (e.g., under high stress) of graphene-based
devices, such as, in particular, nanomechanical systems,
stretchable electronics, and nanocomposites [6–10].
Evidence suggests that two directions in the graphene
lattice, i.e., zigzag (ZZ) and armchair (AC) directions,
are preferred for cracks to propagate along. The selection of
crack path and direction on the nanoscale can have great
impacts on the material’s mesoscopic properties [11], and
for graphene, it results in ZZ or AC edges with completely
different electronic and magnetic properties [12]. These
edge-dependent properties are crucial for next-generation
electronics based on graphene nanostructures such as
nanoribbons [13–16].
Despite its importance, fundamental questions regarding

graphene’s fracture, such as which of the ZZ and AC
directions has the smaller toughness, remain unclear, let
alone a quantitative measurement on the anisotropic factor.
The fracture toughness, defined as the resistance against the
propagation of an initial crack (i.e., critical energy release

rate), is determined by the edge energy of graphene,
according to Griffith’s theory of brittle fracture [5,17].
Calculations have been performed on graphene’s edge
energy, or directly on its crack path during fracture.
Some existing results indicate that ZZ cracks are more
favorable, while others show exactly the opposite [5,18–
29]. Even first-principles calculations based on density
functional theory are dependent on the methodology such
as the exchange-correlation functions and edge structures
[22,24]. The same discrepancy applies to experiments,
where most observations show similar abundance in ZZ
and AC cracks [30–33], while a few report that either AC or
ZZ direction is preferred over the other [26,34–38]. Direct
measurements on the strength of graphene so far lack
reference to the fracture direction [3,5]. Therefore, the
fracture anisotropic factor is not resolved. A simple method
that is angular sensitive and allows for nanoscale charac-
terization of crack path is needed to gain better insight into
nanoscale fracture mechanics.
Mechanical exfoliation is one of the most popular

methods to fabricate 2D materials. For graphene, the
exfoliation leaves an enormous number of atomic steps
on the cleaved graphite surface as a result of mode III
fracture of graphene [39–44]. In this Letter, we show that
these surface steps contain valuable information on the
fracture properties of graphene. Using a high-resolution
atomic force microscope (AFM), two categories of steps
are observed. In one category are groups of parallel steps
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well aligned with the local ZZ directions. Meanwhile, in the
other category are steps consisting of nanoscale ZZ and AC
segments. Combining a simple mechanics model with the
statistics of step directions, we measure the anisotropic
factor for fracture toughness as GZZ=GAC ¼ 0.971. The
results suggest that the ZZ direction has a slightly lower
fracture toughness, or equivalently, edge energy. They
provide an experimental benchmark for the widely scat-
tered existing results, and offer constraints on future
theoretical models on graphene fracture.
Conventional mechanical exfoliation (Supplemental

Material, Sec. 1) [45] of a polycrystalline graphite sample
(highly oriented pyrolytic graphite, HOPG) by a tape (3M,
Scotch 810) was carried out, as sketched in Fig. 1(a). The
cleaved graphite surface was then characterized by an AFM
(Cypher ES, Asylum Research) in lateral force mode.
Height and friction images are shown in Figs. 1(b) and
1(c). Surface steps with a typical height of 1 nm
(Supplemental Material, Sec. 2) are evident in both height
and friction images, as abrupt changes of height, and bright
(high frictional) lines, respectively. A grain boundary (GB)
is also observed in Fig. 1(c) as a high frictional line,
however, with no corresponding height change, which
distinguishes itself from a step [48]. Two adjacent grains
are divided by this GB. The steps form acute angles with
the peeling direction [white arrow in Fig. 1(b)], and they
change direction when crossing the GB, due to the change
of lattice orientation. This observation provides intuitive
evidence that the fracture properties of graphene must be
anisotropic, and the steps are following some certain lattice
orientations.
Thanks to the high spatial resolution of AFM, when the

scan size is reduced to a few nanometers, the graphite
lattice can be imaged. The high-resolution lattice images
are then used to measure the local lattice orientation at any
given position on the graphite surface (Supplemental
Material, Sec. 1). Figure 2(a) shows a friction image of
an area covering four polygon-shaped grains. Steps are
found in the up-down direction, crossing multiple grains.
For grains 1–3, the steps form parallel groups within each

grain and are aligned with the local ZZ directions. As an
example, the lattice image that reveals the local ZZ
direction for grain 3 is shown in Fig. 2(b). Differently,
the steps in grain 4 are not parallel to each other and their
directions show large irregularity. For any given step, its
direction is quantitively measured by defining θstep as the
angle between the step and the peeling direction. And the
local lattice orientation is measured by defining the ZZ
angle θZZ as the angle between the local ZZ direction and
the peeling direction, as sketched in Fig. 2(b). Because of
the sixfold symmetry, θZZ is in the range of −30° to 30°.
Similar imaging and measurements of θstep and θZZ were
carried out for 3047 steps found in 107 grains on the HOPG
surface at 25 different imaged regions, with the results
plotted in Figs. 2(c) and 2(d). In the histogram for
θstep − θZZ, Fig. 2(c), a primary peak is found at the ZZ
direction (θstep ¼ θZZ) along with two secondary peaks at
AC directions (θstep ¼ θZZ � 30°). The ZZ-to-AC peak
height ratio is around 4.3. Meanwhile, Fig. 2(d) further
shows that a large number of data points (that is, data for

FIG. 1. Experimental setup and AFM images. (a) Top layers of
graphite are exfoliated from an HOPG sample with a tape,
exposing a cleaved graphite surface with atomic steps. (b) AFM
height image. Groups of parallel steps form acute angles with the
peeling direction (white arrow). (c) Corresponding friction
image. Steps appear as bright (high frictional) lines. A grain
boundary (GB) is also found. The steps cross the grain boundary
and deflect at the grain boundary due to the change of local lattice
orientation.

FIG. 2. Statistics of step directions. (a) Friction image of an area
covering four grains. θstep is defined as the angle between a given
step and the peeling direction (green arrow). (b) High-resolution
image showing graphene lattice. The zigzag (ZZ) direction is
indicated by the black arrow. θZZ is defined as the angle between
the ZZ direction and the peeling direction. (c) Histogram of
θstep − θZZ for data of 3047 steps found in 107 different grains on
the HOPG surface. A primary peak at ZZ direction and two
secondary peaks at AC directions are found, with a ZZ-to-AC
peak height ratio of 4.3. (d) θstep vs θZZ plot. A considerable
number of data points are clustered near the line of θstep ¼ θZZ
(i.e., ZZ direction). Meanwhile, the other data points are
scattered.
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48 grains out of 107 grains in total) are clustered on the line
of θstep ¼ θZZ, indicating that these steps are all aligned
with the local ZZ directions, while the other data points are
significantly scattered.
To understand why some of the steps show a clear trend

of following local ZZ directions while others do not, the
topography of steps is characterized from microscale down
to atomic resolution. Figure 3(a) shows the friction image
of a region containing three parallel steps whose directions
(dashed lines) are well aligned with the local ZZ direction
(black arrow), with the inset showing a close-up image of
the black box. A high-resolution scan of one step, as shown
in Fig. 3(b), reveals that this ZZ step is atomically sharp and
straight. The inset shows the filtered image where the
graphene lattice is clearly seen. However, for steps that do
not follow local ZZ directions, a completely different
picture is found on the nanoscale. Such an example is
shown in Fig. 3(c), where the direction of the step is 15°
away from the local ZZ direction. A close-up image reveals
that the step is not straight but consists of nanoscale
segments. This structure implies an oscillation during crack

propagation. Figure 3(d) shows the high-resolution image
of a corner on this step where a ZZ segment is connected to
an AC one. This observation explains the large irregularity
for the scattered data points in Fig. 2(d). For these steps,
θstep only represents the apparent step direction on the
microscale, and can differ significantly from the directions
of the nanoscale segments that are either along ZZ or AC
directions. As a result, the apparent step direction does not
necessarily follow local ZZ or AC directions, and can have
large deviations.
To model the fracture of graphene during exfoliation, we

consider that a thin film of graphite is first adhered to the
tape. The adhered graphite film as well as the tape under-
goes elastic tension and bending due to the peeling loading.
This stored strain energy is partially relaxed when the
graphene crack advances. However, an energy cost is also
associated with this crack extension due to the in-plane
fracture of graphene as well as the out-of-plane cleavage of
graphite. Considering the three terms, the total energy of
the system is [39]

U ¼ Ue þ 2γst=dþ τBl; ð1Þ

where Ue is the elastic energy, γ is the graphene edge
energy density which is a function of θ ¼ θstep − θZZ, s is
the crack length, t=d is the number of fractured graphene
layers, with t and d being the thickness of the fractured
graphene layers and the thickness of a single graphene
layer, respectively. The fracture toughness of graphene,
defined as the critical energy release rate, is GC ¼ 2γ=d.
Finally, τ is the cleavage energy of graphite basal plane, Bl
is the cleaved area. When the peeling advances by a virtual
distance, dl, it is found that both the relaxation of elastic
energy, dUe, and the cost of cleavage energy, τBdl, are
independent on crack angle θ, as detailed in Supplemental
Material, Sec. 3. Therefore, according to Eq. (1), the energy
favorable crack angle is determined by finding the mini-
mum point of the “fracture force,” F� ¼ 2γð∂s=∂lÞt=d.
Since the apparently straight steps can consist of nano-

scale AC and ZZ segments as sketched in Fig. 4(a), γ
should be a weighted average of γAC and γZZ according to
the total length of AC and ZZ segments, where γAC and γZZ
are edge energy densities along AC and ZZ directions,
respectively. An analytical form is given as (detailed in
Supplemental Material, Sec. 3):

γðθÞ ¼ 2γAC½sin θ þ Aγ sinð30° − θÞ�; ð2Þ

where Aγ ¼ ðγZZ=γACÞ ¼ ðGZZ=GACÞ is the anisotropic
factor for edge energy and fracture toughness. GZZ and
GAC are fracture toughness along the ZZ and AC directions.
Equation (2) is equivalent to the results derived in Ref. [23]
where the differences in density and energy of carbon
atoms were considered for ZZ and AC edges, resulting in
an anisotropic factor of Aγ ¼ ð ffiffiffi

3
p

ϵZZ=2ϵACÞ. Here, the

FIG. 3. High-resolution imaging of surface steps. (a) Friction
image of an area with three parallel steps. The steps are well
aligned with the local ZZ direction (black arrow). The inset shows
the close-up image of the black box. (b) Atomic scale image of
the orange box in the inset of (a). An atomically sharp and straight
ZZ step is clearly observed. The inset shows the filtered image
where graphene lattice is better seen. (c) Friction image of an area
with a surface step, whose direction (dashed lines) is 15° away
from the local ZZ direction (black arrow). The inset shows the
close-up image of the black box, where the apparently straight
step is revealed to consist of nanoscale segments whose direction
can be different from the apparent step direction. (d) Atomic scale
image of the orange box in the inset of (c), where a corner
connecting a ZZ segment and an AC one is shown.
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energy of a ZZ or AC atom refers to the energy difference
of one such atom compared to the bulk state (denoted by
ϵZZ and ϵAC, respectively) [23].
For any given lattice orientation (θZZ), the preferred step

direction (θstep) can be predicted by the above energy
arguments. An example is shown in Fig. 4(b), where ZZ
and AC directions are found favorable for a small θZZ
(θZZ ¼ 10°) and large θZZ (θZZ ¼ 25°), respectively. In
general, a critical angle θC is dependent of Aγ as (detailed in
Supplemental Material, Sec. 3):

tanðθCÞ ¼
2

Aγ
− ffiffiffi

3
p

: ð3Þ

The step is predicted to follow the ZZ direction, or AC
direction, depending on whether the peeling direction
is close to the ZZ direction (jθZZj < θC), or away from
the ZZ direction (jθZZj > θC), as shown in Fig. 4(c). In fact,
Fig. 2(d) resembles Fig. 4(c) in a way that many data points
are clustered near the ZZ line for small jθZZj. However, the
other data points are scattered as a background noise.
Equation (3) implies that Aγ can be measured if we can

evaluate the critical angle θC from the experimental data in
Fig. 2(d). To do so, we first recall that a step can consist of
nanoscale ZZ and AC segments. Therefore, we define the
ZZ percentage (in length), pZZ, for a step with an arbi-
trary angle θ ¼ θstep − θZZ. An analytical form of pZZ as a
function of θ is explicitly given based on geometry, as
detailed in Supplemental Material, Sec. 3. With this
definition, all the data points ðθZZ; θstepÞ are converted into

ðθZZ; pZZÞ. Theoretically, the simplified model above
predicts the probability of having a ZZ step to be either
1 or 0, depending on whether jθZZj is smaller or larger than
θC. Therefore, pZZðθZZÞ should be a rectangle function
with discontinuous steps at �θC. Numerically, a function
with smoothened steps, pZZðθZZÞ ¼ Φ0;σðθZZ þ θCÞ−
Φ0;σðθZZ − θCÞ, was used to fit the experimental data
and is plotted in Fig. 5, where Φ0;σ is the cumulative
distribution function for Gaussian distribution with mean of
0 and standard deviation of σ. An estimation of θC ¼
18.2°� 0.1 was calculated, corresponding to Aγ ¼
0.971� 0.001. It also implies a ZZ-to-AC probability ratio
of 2θC=ð30° − θCÞ ¼ 3.1, which is in crude agreement with
the ZZ-to-AC peak height ratio measured in Fig. 2(c). The
smoothening parameter σ was set to 2° here, and its value
has negligible effects on the estimated value of θC. The
physical meaning of σ can be interpreted as an uncertainty
of the “effective peeling angle” resulted from random
perturbations, as detailed in Supplemental Material,
Sec. 4. It is shown in Fig. 5 that the fitting captures the
main feature of the data that most steps follow ZZ
directions when jθZZj is smaller than a threshold value
(i.e., θC). However, the largely scattered data points in the
background, corresponding to the steps containing many
nanoscale ZZ and AC segments, seem to disobey this rule.
This leads to a relatively large root-mean-square error for
the fitting (0.36, which is 36% of the maximum value for
pZZ), despite the apparently small uncertainty for θC
and Aγ . More details on fitting errors can be found in
Supplemental Material, Sec. 4. There are several possible
causes of the oscillatory propagation in these cracks, such
as the inevitable perturbation of actual peeling angle during
the manually controlled exfoliation, and complex local
stress field near the crack tip [49]. Intrinsic crack deflection
due to asymmetric edge is also found for another 2D
material, h-BN, recently [11]. The exact physical origin of
the winding behavior in graphene steps is currently unclear.
The irregularity of step direction due to winding is assumed

FIG. 4. Theoretical modeling. (a) Schematics showing the
model. (b) F� vs θstep for θZZ ¼ 10° (upper panel) and θZZ ¼
25° (lower panel). The locations of minimum points suggest that
the ZZ direction is favorable for θZZ ¼ 10°, while the AC
direction is favorable for θZZ ¼ 25°. (c) Theoretical prediction
of θstep vs θZZ. The step propagates along the ZZ direction if
θZZ ∈ ð−θc; θcÞ, and along the AC direction if otherwise, where
θc is the critical angle defined by Eq. (3).

FIG. 5. ZZ percentage (pZZ) vs ZZ angle (θZZ). Data points are
extracted from Fig. 2(d). The red line shows the fitting of pZZ to a
smoothened rectangle function, yielding θc ¼ 18.2°, correspond-
ing to an anisotropic ratio of Aγ ¼ 0.971.
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as a random noise here, which is a limitation of the present
model and harms the validity and accuracy of estimated Aγ .
By geometrical constructions only (i.e., assuming that

ϵZZ ¼ ϵAC), the edge energy density is dependent on the
number of broken bonds, which would lead to the con-
clusion of Aγ ¼

ffiffiffi

3
p

=2 ≈ 0.866. However, the estimated
value of Aγ ¼ 0.971 suggests a weaker anisotropy, which
may arise from the electronic relaxation at the armchair
bonds that lowers the edge energy density by forming triple
bonds between the two-coordination carbon atoms [22,23].
A summary on literature results and comparison to the
value measured here is given in Supplemental Material,
Sec. 5. It is also noted that the extracted fracture toughness
is based on the Griffith scenario where dissipative processes
such as phonon and electronic excitation or inelastic events
are neglected. Therefore, the fracture toughness is simply
determined by twice the edge energy, GC ¼ 2γ=d. In the
real situation, GC could be larger than this value, and the
difference awaits further exploration and discussion.
In conclusion, the anisotropic fracture of graphene is

studied by surface steps on cleaved graphite. The morphol-
ogy and direction of the steps are investigatedwith respect to
the peeling direction and the local lattice orientation on
different grains of the polycrystalline HOPG. Part of the
steps are well aligned with the local ZZ directions.
Meanwhile, the other steps are winding on the nanoscale
and show significant irregularity in direction. Combining a
mechanics analysis on the fracture process with the statistics
of step directions, the anisotropic factor of fracture tough-
ness, or equivalently, edge energy density, is measured as
Aγ ¼ GZZ=GAC ¼ γZZ=γAC ¼ 0.971, suggesting that the
ZZ direction has a slightly lower fracture toughness. The
anisotropy is weaker than the estimation based on geomet-
rical considerations only, implying a relaxation of bonds at
the edge. These results provide an experimental benchmark
for the widely scattered existing results, offer constraints on
future theoretical and simulation models on graphene
fracture, and have implications on the fabrication, function-
ing, and robustness of graphene nanodevices in general.
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1. Experimental methods 

Mechanical exfoliation 

The peeling of the graphite sample was controlled manually, with a peeling speed as low as 

possible, roughly on the order of 0.1 to 1 mm/s. The purpose of using a small peeling speed is 

to have a peeling speed that is much lower than the speed of elastic waves in graphite so that 

the mechanical loading can be treated as quasi-static.  

The peeling direction was usually parallel to one edge of the rectangular-shaped graphite 

sample. Then the sample was transferred to AFM with the same edge aligned with the 

coordinate system in AFM defined by the scanning direction. Since the peeling process is 

conducted manually, we cannot precisely measure the peeling speed, peeling angle, or peeling 

force. This is one possible origin of uncertainty in our experiments.  

Step angle measurement 

Steps are shown in the AFM friction images as bright (high-friction) lines. A typical result 

is shown in Fig. S1. Also shown in Fig. S1(a) are grain boundaries (GBs). Both GBs and steps 

appear as bright lines in the friction image, but they can be distinguished in the height image, 

where steps show abrupt change in height while GBs do not. Each step was manually labeled 

[red lines in Fig. S1(b)], then a customized computer program was used to extract the step angle 

from the labeled image. The uncertainty of the step angle (𝜃step) can be estimated as the 

standard error of repeated measurements on a same step, which is typically on the order of 1°. 



 

Figure S1. Measurement of step angle by AFM. (a) AFM friction image. Steps are shown as bright 

(high frictional) lines. Also shown are grain boundaries (GBs). (b) Steps are labeled in red color, 

then a customized code is used to extract their angles. Scale bars, 10 μm. 

Lattice angle measurement 

To determine the lattice orientation using AFM, a small area (usually 5 nm ×  5 nm) at a 

given position was scanned by AFM in lateral force mode, using a compliant cantilever (VIT-

P-C, NT-MDT & TipsNano, spring constant 0.2 N/m). A typical lateral force image is shown 

in Fig. S2(a). The lattice orientation can be extracted from the fast Fourier transformation (FFT) 

of the raw image as shown in Fig. S2(b), or from the filtered lateral force image as shown in 

Fig. S2(c). It is also measured in Fig. S2(c) that the distance between adjacent hollow sites of 

the graphene lattice is around 2.59 Å, corresponding to a carbon-carbon bond length of 1.49 Å, 

which is consist with the theoretical bond length in graphene lattice 𝑎 = 1.42 Å . The 

uncertainty of the lattice angle (𝜃ZZ) is estimated as the standard error of angle measurements 

on a series of images of repeated scanning at the same position. And the standard error is 

typically below 3°. 

 

Figure S2. Determination of lattice orientation by AFM. (a) Raw image (lateral force) of a 5 nm x 5 

nm area on graphite surface. (b) Fast Fourier transform (FFT) of the raw image. ZZ and AC 

directions are labeled by the red arrows. (c) Filtered lateral force image. ZZ and AC directions are 

labeled by the white arrows. The distance between adjacent hollow sites is measured to be 2.59 Å, 

corresponding to carbon-carbon bond length of 1.49 Å. Scale bars in (a) and (c) are 1 nm. 

 



2. Extended data on step morphology 

Step height  

Height of the steps are extracted from AFM height images. The histogram for over 1500 

steps on 10 different regions is shown in Fig. S3. The majority of the steps have height less than 

1 nm, corresponding to the thickness of 1~3 layers of graphene. The highest step found is 

around 4.6 nm. 

 

Figure S3. Histogram for step height. Most of the steps have height less than 1 nm, corresponding 

to 1~3 layers of graphene. 

Lateral density of steps 

The lateral density of steps is defined as the total length of all steps in a grain divided by the 

area of this grain. The density defined in this way, hereafter denoted as 𝜆, has a unit of μm−1. 

And 1/𝜆 represents the effective mean distance between two adjacent steps. 

Density of steps was calculated for data from 2779 steps found in 97 different grains in total. 

Figure S4 shows that step density is scattered within the range of 0.02 to 1.7 μm−1, with a mean 

value of 0.9 μm−1, and that no significant dependence on 𝜃ZZ is found. 

 

Figure S4. Step density vs. 𝜃𝑍𝑍 for data corresponding to 2779 steps in 97 different grains. No 

significant trend is found. 

Steps on h-BN, MoS2, and flake graphite 

Although we did not find an obvious dependence of step density on grain orientation, we did 

observe that step density can be very different for cleaved surfaces of HOPG and flake graphite, 

as well as h-BN and MoS2. Mechanical exfoliation was conducted for h-BN, MoS2, and natural 



flake graphite. Optical microscope images and AFM height and friction images of the cleaved 

surfaces are shown in Fig. S5. As a comparison, results for HOPG are also included. High steps 

that are visible under optical microscope are found for all these layered materials. However, 

when scanned under AFM, a difference is observed on h-BN, MoS2, and flake graphite. For 

HOPG, apart from the high steps visible under optical microscope, there are also many atomic 

steps that can be observed by AFM but invisible under optical microscope [see Figs. S5(k)(l)]. 

However, for the other three layered materials, these atomic steps are seldomly found. Overall, 

the steps are much fewer in number, and thus provide inadequate data for determining fracture 

anisotropy. A possible reason is that these materials tend to have much larger grain size than 

HOPG, with the latter being well-known as polycrystalline material containing micrometer to 

nanometer sized grains [1]. The grain boundaries in HOPG might act as nucleation sites for 

cracks, and leads to a denser distribution of surface steps which is not seen on the three crystals 

with larger grain size. 

 

Figure S5. Comparison of cleaved surfaces of h-BN, MoS2, flake graphite, and HOPG. Subfigures 

(a), (d), (g), and (j) are optical microscope images, and the black boxes indicate the area for AFM 



scans. Subfigures (b), (e), (h), and (k) are AFM height images. And subfigures (c), (f), (i), and (l) 

are AFM friction images. All the scale bars in optical images are 100 μm, while those in AFM images 

are 10 μm. 

“Branched” steps 

“Branched” steps were occasionally observed in the friction image, such as the one indicated 

by the red arrow in Fig. S6(b). However, on the height image, Fig. S6(a), it is seen that these 

are not branched steps, but instead, steps of different height stacked together. To show this, a 

section profile is drawn at the position indicated by the red line, and shown in Fig. S6(c). Five 

terraces (labeled A to E) are divided by 4 steps. The step between terraces A and B is 1.1 nm 

high, equivalent to around 3 layers of graphene. Meanwhile, that between B and C is 0.4 nm (~ 

1 layer); and C and D, 0.7 nm (~ 2 layers); and finally D and E, 1.8 nm (~5 layers). The steps 

have different height, although they all just appear as bright lines in the friction image. The 

highest step (the step between D and E) is made of around 5 layers of graphene, and the crack 

paths in these 5 layers happen to coincide to form one single step. However, on the other side 

of the terrace, the crack paths of the 5 layers do not coincide. And more than one steps are 

formed. In the friction image, it appears that the steps are branched. 

 

Figure S6. (a) AFM height image and (b) the corresponding friction image. Red arrow indicates an 

apparent “branched step”. (c)(d) Profiles for the height and friction at the location indicated by the 

red lines in (a) and (b). 

Segment length and connecting corners 

It is discussed in the main text that some steps that appear to be straight on the microscale 

are actually made of ZZ and AC segments connected by corners. The energy of an edge with 

an arbitrary angle is given by Eq. (2). This equation considers 𝛾 as a weighted function of the 

energies of AC and ZZ segments, 𝛾AC and 𝛾ZZ. In principle, a correction term should be added 

to account for the energy of those corners connecting ZZ and AC segments. This correction 

was discussed in Ref. [2], termed as “AZ-mix energy correction”. It was estimated that this 

correction term is in the range of 10 meV/Å, 100 times smaller than 𝛾AC and 𝛾ZZ which are both 

around 1 eV/Å, and is neglected in this work. 

Systematic investigation of segment length and the density of connecting corners, as well as 

their dependence on other peeling parameters is difficult. To have a clear image of the corner 



and the segments it connects, the resolution needs to be on the lattice scale, such as Fig. 3(d). 

However, to obtain any statistical quantities, a large number of segments need to be imaged, 

which means that the image size has to be at least hundreds of nanometers. This mismatch of 

scales makes the imaging challenging. 

Despite the technical difficulties, a lower-resolution image of two steps containing some 

segments and corners is shown in Fig. S7(a). In the histogram, Fig. S7(b), it is found that most 

of the segments are along two different ZZ directions separated by 60°. The average segment 

length is 6.9 nm, corresponding to a corner density of 0.14 nm−1. Considering that the lattice 

constant of graphene in ZZ direction is 2.46 Å, a corner is expected every 28 unit cells on 

average. Segments that appear to be neither ZZ nor AC are found, and most of them have shorter 

length, as shown in Fig. S7(c). The angle measurement for a short segment might have larger 

uncertainty, and we do not know whether these segments are made of even shorter ZZ and AC 

segments due to the limitation on resolution. In fact, when seen on the lattice scale, all edges 

can be considered as connection of very short ZZ and AC segments with length of only several 

lattice constants. Due to the limited resolution and small size of dataset, the results shown in 

Fig. S7 should be only considered as an example, further study is needed on the nanoscale 

topography and behavior of step segments. 

 

Figure. S7. (a) AFM image of two steps that contain segments. (b) 

Histogram of segment angle. (c) Segment length vs. segment angle. 

 

3. Derivations of theoretical model 

Energy favorable crack direction 

As described in the main text, the total energy associated with the fracture process is:  

𝑈 = 𝑈𝐵 + 𝑈𝑇 + 2𝛾𝑡s/𝑑 + 𝜏𝐵𝑙.     (S1) 

Here 𝑈𝐵 + 𝑈𝑇 is the total elastic strain energy, where 𝑈𝐵 and 𝑈𝑇 are the bending and tensile 

energies of the tape and the graphite film adhered to the tape. Since the fractured fragment 

(whose thickness is only 1~3 layers of graphene according to step height measurements) is 

much thinner than the tape itself. It is reasonable to assume that the elastic energy is mainly 



contributed from the tape and the graphite film adhered to the tape. Therefore, the tensile energy 

is: 

𝑈𝑇 =
1

2
𝐸𝐴Δ2/𝑙,      (S2) 

where 𝐸𝐴 is the tensile stiffness, and Δ is the tensile deformation. Meanwhile, the bending 

energy was given in Ref. [3] as: 

𝑈𝐵 = √2𝐹𝐸𝐼 (√2 −
sin 𝛼

√1−cos 𝛼
),     (S3) 

where 𝐸𝐼 is the bending stiffness. It is noted that 𝑈𝐵  is independent on 𝑙, 𝜃step , or 𝑠. From 

geometric relations as shown in Fig. S8, we have:  

𝛿Δ = 𝛿𝑥 − (1 + cos 𝛼)𝛿𝑙.     (S4) 

 

Figure S8. Schematic of the peeling process (side view). 

According to Griffith theory, equilibrium propagation of the crack requires 𝜕𝑈/𝜕𝑠 = 0. 

Therefore, taking the derivative of Eq. (S1) with respect to 𝑠, and combing it with the geometric 

relation 𝛿𝑙 = cos(𝜃step) 𝛿𝑠 yields: 

𝜕𝑈𝑇

𝜕𝑠
+ 2𝛾𝑡/𝑑 + 𝜏𝐵 cos(𝜃step) = 0.    (S5) 

Meanwhile, taking the 𝑠-derivative of Eq. (S2) at a fixed 𝑥 (i.e. 𝛿𝑥 = 0) and combining with 

Eq. (S4) yields: 

𝜕𝑈𝑇

𝜕𝑠
=

𝜕𝑈𝑇

𝜕𝑙
cos(𝜃step) = −

𝐸𝐴

2
∙ [

2Δ

𝑙
(1 + cos 𝛼) + (

Δ

𝑙
)

2

] cos(𝜃step).  (S6) 

Considering that 
𝐸𝐴Δ

𝑙
= 𝐹, where 𝐹 is the peeling force, Eq. (S6) is equivalent to 

𝜕𝑈𝑇

𝜕𝑠
= −cos(𝜃step) [𝐹(1 + cos 𝛼) +

𝐹2

2𝐸𝐴
].   (S7) 

Substituting Eq. (S7) into Eq. (S5) yields: 

− cos(𝜃step) [𝐹(1 + cos 𝛼) +
𝐹2

2𝐸𝐴
] + 2𝛾𝑡/𝑑 + 𝜏𝐵 cos(𝜃step) = 0.  (S8) 

For 𝛼 < 𝜋/2, 1 + cos 𝛼 is greater than 1, while 
𝐹

𝐸𝐴
 is the tensile strain and should be much 

smaller than 1. Thus, Eq. (S8) can be further simplified as: 



 − cos(𝜃step) 𝐹(1 + cos 𝛼) + 2𝛾𝑡/𝑑 + 𝜏𝐵 cos(𝜃step) = 0.  (S9) 

Therefore: 

𝐹 = [
2𝛾𝑡

cos(𝜃step)∙𝑑
+ 𝜏𝐵] /(1 + cos 𝛼).    (S10) 

In the experiment condition, peeling was conducted in a manner that 𝛼 ≈ 0. the propagation 

angle of the crack ( 𝜃step ) should be the point where 𝐹  finds its minimum [4]. Here the 

anisotropic edge energy, 𝛾, is a function of 𝜃 = 𝜃step − 𝜃ZZ. It can be seen from Eq. (S10) that 

𝐹 only depends on 𝜃 through 𝐹∗ =
2𝛾𝑡

cos(𝜃step)∙𝑑
. Since 𝐹∗ has a dimension of force, we might 

name it as the “fracture force” [4]. The determination of energy favorable crack angle comes 

down to finding the minimum point of 𝐹∗. 

Derivations of Eq. (2) and calculation of 𝒑𝒁𝒁 

We remind that some of the steps consist of nanoscale ZZ and AC step segments, so that 

their apparent directions are neither ZZ nor AC. A step with an arbitrary angle 𝜃 is sketched in 

Fig. S9. For an apparent step with length 𝐿0, the actual total length of ZZ segments is 𝐿1 =

𝐿0 sin(30° − 𝜃) / sin 150° , and the actual total length of AC segments is 𝐿2 = 𝐿0 sin 𝜃 /

sin 150°. Therefore, the apparent edge energy density is a weighted average of 𝛾AC and 𝛾ZZ as: 

𝛾(𝜃) =
𝐿2

𝐿0
∙ 𝛾AC +

𝐿1

𝐿0
∙ 𝛾ZZ = 2 sin 𝜃 ∙ 𝛾AC + 2 sin(30° − 𝜃) ∙ 𝛾ZZ.  (S11) 

 

Figure S9. Sketch of the apparent step and its consisting ZZ and AC segments.  

Similar geometric considerations were also exploited in the extraction of 𝜃C  from 

experimental data. We assume that a step with an arbitrary angle 𝜃 is made of a portion of 𝑝ZZ 

of zigzag step and a portion of 1 − 𝑝ZZ of armchair step, and the zigzag percentage 𝑝ZZ as a 

function of 𝜃 is defined as: 

𝑝ZZ(𝜃) =
𝐿1

𝐿1+𝐿2
=

cos 𝜃−√3 sin 𝜃

cos 𝜃+(2−√3) sin 𝜃
.    (S12) 

With this definition, all the data points (𝜃ZZ, 𝜃step) are converted into (𝜃ZZ, 𝑝ZZ). And 𝑝ZZ was 

then fitted to a step-like function to extract the value of 𝜃C , as detailed later in this 

supplementary file.  

Derivations of Eq. (3) 



Equation (3) in the main text gives an analytical relation between 𝜃C and 𝐴𝛾. The critical 

angle, 𝜃C, is the value of 𝜃𝑍𝑍 where the minimum point of function 𝐹∗(𝜃)~𝛾(𝜃)/cos (𝜃 + 𝜃𝑍𝑍) 

changes from 𝜃 = 0 to 𝜃 = −30°, where 𝜃 = 𝜃step − 𝜃ZZ is the cracking angle. 

Calculations yield: 

𝛾(0)

cos (0+𝜃𝑍𝑍)
=

2𝛾AC∙𝐴𝛾 sin 30°

cos 𝜃𝑍𝑍
.    (S13) 

Meanwhile,  

𝛾(30°)

cos (𝜃𝑍𝑍−30°)
=

2𝛾AC∙sin 30°

cos (𝜃𝑍𝑍−30°)
.    (S14) 

Therefore,  

𝐴𝛾 ∙ cos(𝜃C − 30°) = cos 𝜃C.    (S15) 

Thus we derived Eq. (3): 

tan 𝜃C =
2

𝐴𝛾
− √3.      (S16) 

 

4. Data fitting and errors 

Data fitting in Fig. 5 

The theoretical model predicts that the step either follows ZZ or AC direction depending on 

whether |𝜃ZZ| is smaller or larger than 𝜃C. Therefore, the ZZ percentage function should be: 

𝑝ZZ(𝜃ZZ) = {
1, |𝜃𝑍𝑍| < 𝜃C

0, |𝜃ZZ| > 𝜃C
.    (S17) 

To extract the value of 𝜃C, the datapoints in Fig.5 should be fitted to Eq. (S17). However, the 

discontinuity at ±𝜃C  makes such a fitting numerically difficult. Instead of Eq. (S17), the 

following function is used: 

𝑝ZZ(𝜃ZZ) = 𝛷0,σ(𝜃𝑍𝑍 + 𝜃𝐶) − 𝛷0,σ(𝜃𝑍𝑍 − 𝜃𝐶),   (S18) 

where 𝛷0,σ is the cumulative distribution function for Gaussian distribution with mean of 0 and 

standard deviation of 𝜎. This function has smoothened steps at ±𝜃C, and it approaches the 

function given in Eq. (S17) when 𝜎 approaches 0. A reasonably small value of 2° is chosen for 

𝜎. A least square fit yields the curve in Fig. 5 and 𝜃C value reported in the main text. Physically, 

the smoothening parameter 𝜎 can be interpreted as an uncertainty of the actual peeling angle. 

In this scenario, the actual peeling angle, 𝛿, is not perfectly known, but instead, assumed to 

follow a Gaussian distribution with mean of 0 and standard deviation of 𝜎. The ZZ percentage 

function is thus given by 𝑝ZZ(𝜃ZZ) = 𝑝(−𝜃C < 𝜃ZZ − 𝛿 < 𝜃C) = 𝑝(𝜃ZZ − 𝜃C < 𝛿 < 𝜃ZZ +



𝜃C), yielding the same result as Eq. (S18). The fitted value of 𝜃C show negligible dependence 

on 𝜎 as shown in Fig. S10, which validates the fitting and choice of 𝜎.  

 

Figure S10. The fitted value of 𝜃C has negligible dependence on the value of 𝜎.  

Fitting errors in Fig. 5 

The datapoints in Fig. 5 were fitted to Eq. (S18) with a least square fit algorithm using 

MATLAB. The root-mean-square error of the fitting is given as RMSE = √𝑆/(𝑁 − 1), where 

𝑆 is the sum of squared errors, and 𝑁 is the number of datapoints. The standard deviation of 

estimated 𝜃C is 𝜎𝜃𝐶
= RMSE/√𝐉T𝐉, where the Jacobian, 𝐉, is an 𝑁-by-1 matrix. The uncertainty 

of 𝐴𝛾 is calculated from the uncertainty of 𝜃C by taking the derivative of Eq. (3), which yields 

𝜎𝐴𝛾
=

𝐴𝛾
2

2(cos 𝜃C)2 𝜎𝜃𝐶
. 

The apparent uncertainty of 𝜃C and 𝐴𝛾 is very small. However, we do not intend to claim 

that an accurate measurement has been achieved. This is because that the root-mean-square 

error of the fitting is relatively large (RMSE = 0.36, that is, 36% of the maximum value of 𝑝𝑍𝑍). 

This relatively large root-mean-square error is resulted from the fact that a large portion of data 

is scattered irregularly as a background noise to the datapoints clustered near 𝑝ZZ = 1 (ZZ 

direction). And the scattered datapoints correspond to the steps containing nanoscale ZZ and 

AC segments. Therefore, the major limitation of the current work is that the winding behavior 

of those steps with irregular directions is not fully included in the present model, and that harms 

the validity and accuracy on the measurement of 𝐴𝛾. 

Histogram in Fig. 2(c) 

Histogram of 𝜃step − 𝜃ZZ is produced by firstly counting the number of datapoints lying in 

each bin of 𝜃step − 𝜃ZZ  ranging from −30° to 30°, and then calculating the data frequency 

normalized by data density with respect to 𝜃ZZ. The purpose of the normalization is to account 



for the effect of a non-uniform distribution of data-points in 𝜃ZZ. However, the two histograms 

before and after normalization, as shown in Fig. S11, show only minute difference.  

 

Figure S11. Histograms before (a) and after (b) normalization. 

 

 

5. Comparison with literature results 

Literature results on 𝑨𝜸 

Some theoretical results on edge energy in literature are summarized in Table S1. Here 𝛾ZZ 

and 𝛾AC (in the unit of eV/Å) are the edge energy densities along ZZ and AC directions. For 

those literatures where fracture toughness 𝐺C (in the unit of J/m2) is given, edge energy is 

deduced as 𝛾 = 𝐺C𝑑/2, where 𝑑 = 0.34 nm is the thickness of a single graphene layer. 

Table S1. Summary of theoretical results on edge energy in literature. 

Method 𝛾ZZ 

(eV/Å) 

𝛾AC 

(eV/Å) 

𝐴𝛾 Ref. 

DFT 1.27 0.95  1.33 Ref.  [5] 

DFT 1.391 1.202 1.16 Ref.  [6] 

DFT 1.543 1.202 1.28 Ref.  [6] 

DFT (GGA) 1.17 1.01 1.16 Ref.  [2] 

DFT (LDA) 1.38 1.11 1.24 Ref.  [2] 

DFT 1.31 0.98 1.34 Ref.  [7] 

DFT 1.346 1.009 1.33 Ref.  [8] 



DFT 0.96 0.98 0.98 Ref.  [7] 

DFT 1.147 1.202 0.95 Ref.  [6] 

MD (ReaxFF) 1.08  1.03  1.05 Ref.  [9] 

MD (AIREBO) 1.17 1.69 0.69 Ref.  [5] 

MD (AIREBO) 1.17 1.24 0.94 Ref.  [5] 

MD (REBO) 1.25 1.33 0.94 Ref.  [10] 

MD 

(AIREBO) 

1.08 1.16 0.93 Ref.  [2] 

MD (REBO) 1.25 1.31 0.95 Ref.  [2] 

 

Strength-based fracture criterion and literature results on 𝑨𝝈 

Other than the energy-based criterion discussed in the main text, the direction of step can be 

determined by strength-based fracture criterion as well. The stress field close to the crack-tip 

during the mechanical exfoliation of graphene has not been understood completely. However, 

here we might assume that the mode III far-field loading in the peeling process leads to a stress 

distribution near the crack tip which is described by the classical mode I asymptotic 

field [11,12]. Consider that a pre-crack exists along the peeling direction (the horizontal 

direction in Fig. S12), and the circumferential stress is: 

𝜎𝜃𝜃 =
𝐾

√2𝜋𝑟
cos3 𝜃

2
      (S19) 

 

Figure S12. Sketch for strength-based fracture criterion.  

where 𝑟 and 𝜃  are the polar coordinates, 𝐾  is the mode I stress intensity factor. We might 

assume that the closest ZZ direction is at an angle of 𝜃 = 𝜃ZZ, then the closest AC direction is 

at 𝜃 = 30° − 𝜃ZZ. At any given angle, the ratio between the local circumferential stress and the 

local fracture strength of graphene is 𝜎𝜃𝜃/𝜎s . When the peeling direction is close to ZZ 

direction, i.e., |𝜃ZZ| < 𝜃C . This ratio is larger for ZZ direction than AC direction, i.e., 

𝜎𝜃𝜃(𝜃ZZ)/𝜎ZZ > 𝜎𝜃𝜃(30° − 𝜃ZZ)/𝜎AC, where 𝜎ZZ and 𝜎AC are the strength of graphene under 

tensile loading perpendicular to ZZ and AC directions, respectively. Similarly, for |𝜃ZZ| > 𝜃C, 



we have 𝜎𝜃𝜃(𝜃ZZ)/𝜎ZZ < 𝜎𝜃𝜃(30° − 𝜃ZZ)/𝜎AC. Therefore, at the critical angle, the two ratios 

are identical: 

𝜎𝜃𝜃(𝜃C)

𝜎ZZ
=

𝜎𝜃𝜃(30°−𝜃C)

𝜎AC
.     (S20) 

And thus the fracture strength anisotropy factor is given as 𝐴𝜎 = 𝜎ZZ/𝜎AC = 𝜎𝜃𝜃(𝜃C)/

𝜎𝜃𝜃(30° − 𝜃C) . This analysis, along with the measured 𝜃c = 18.2° , yields the strength 

anisotropy factor of graphene as 𝐴𝜎 = 0.98. 

As a comparison, some theoretical results for fracture strength of graphene are summarized 

in Table S2. For some of the literature, the critical stress intensity factors for ZZ and AC cracks 

(𝐾ZZ and 𝐾AC) are given. Since the critical stress intensity factor is linearly proportional to 

fracture strength, the anisotropic ratios for critical stress intensity factor and for fracture strength 

are identical (i.e., 𝐴𝜎 = 𝐴𝐾, where 𝐴𝐾 = 𝐾ZZ/𝐾AC). Therefore, they are both listed in Table S2. 

Table S2. Summary of theoretical results on edge energy in literature. 

Method 𝜎ZZ or 𝐾ZZ 𝜎AC or 𝐾AC 𝐴𝜎 or 𝐴𝐾 Ref. 

DFT 110 GPa 121 GPa 0.91 Ref.  [13] 

DFT 107.2 GPa 117.5 GPa 0.91 Ref.  [14] 

MD (SW) 129 GPa 142 GPa 0.91 Ref.  [15] 

MD 

(AIREBO) 

3.97 MPa ∙ √m 4.04 MPa ∙ √m 0.98 Ref.  [16] 

MD (REBO) 3.05 MPa ∙ √m 3.38 MPa ∙ √m 0.90 Ref.  [17] 

MD 

(Tersoff) 

3.8 MPa ∙ √m 4.1 MPa ∙ √m 0.93 Ref.  [18] 

MD 

(Tersoff) 

4.0 MPa ∙ √m 4.2 MPa ∙ √m 0.95 Ref.  [18] 
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